1. Neuroscience

Computer model can process disparate sources of clinical data to predict brain age

Scientists have developed a computer model that can accurately predict brain age and could be used to combine different types of brain function tests to predict patient outcomes such as cognitive decline or depression.
Press Pack
  • Views 177
  • Annotations

Scientists have trained a computer to analyse different types of brain scan and predict the age of the human brain, according to a new study in the open-access journal eLife.

Their findings suggest that it may be possible to use the model clinically to combine different types of tests of brain function to predict other patient outcomes, such as cognitive decline or depression.

Non-invasive tests of brain function, such as magnetoencephalography (MEG), magnetic resonance imaging (MRI) and positron emission tomography (PET), play a crucial role in clinical neuroscience. But because these tests all measure different aspects of brain function, none of them are optimal on their own. Training computers to analyse data from different tests and predict a clinical outcome would provide a more complete picture of brain function.

“Computer models that have been trained to predict age of a person from brain data of healthy populations have provided useful clinical information,” explains lead author Denis Engemann, a research scientist at Inria, the French national research institute for the digital sciences. “The problem is that, in the clinic, it is not always possible to obtain every type of data necessary for this analysis.”

In this study, the team set out to see if they could develop a model that combines the anatomical information provided by MRI scans with information about brain rhythms that is powerfully captured by MEG. Most importantly, they wanted to see whether the model would still work if some of the data was missing.

They trained their computer model with a subset of data from the Cam-CAN database, which holds MEG, MRI and neuropsychological data for 650 healthy people aged between 17 and 90 years old. They then compared different versions of the model with the standard anatomical MRI scan, and models that had additional information from functional MRI (fMRI) scans and MEG tests. They found that adding either the MEG or fMRI scan to the standard MRI led to a more accurate prediction of brain age. When both were added, the model was enhanced even further.

Next, they looked at a marker of brain age (called brain age delta) and studied how this related to different brain functions that are measured by MEG and fMRI. This confirmed that MEG and fMRI were each providing unique insights about the brain’s function, adding further power to the overall model.

However, when they tested their model against the full Cam-CAN database of 650 people, some of whom did not have MRI, fMRI and MEG data available, they found that, even with the missing data, the computer model using what was available was still more accurate than MRI alone. This is important, because in hospital neurology clinics, it is not always possible to get patients booked in for every type of scan.

In fact, as most hospitals use electroencephalography (EEG) rather than MEG tests, another important finding was that the most powerful brain function measurement that MEG tests provide to the model can also be accurately measured by EEG. This means that in the clinic, EEG could potentially be substituted for MEG without an impact on the predictive power of the model.

“We have used an opportunistic approach to train a computer model to learn from the data available at hand and predict brain age,” concludes senior author Alexandre Gramfort, Research Director at Inria. “We anticipate that similar performance can be unlocked using simpler EEG tests that are routinely used alongside MRI in the clinic and could easily be applied to other clinical end points, such as drug dosage, survival or diagnosis.”

Media contacts

  1. Emily Packer
    eLife
    e.packer@elifesciences.org
    +441223855373

About

About eLife

eLife is a non-profit organisation created by funders and led by researchers. Our mission is to accelerate discovery by operating a platform for research communication that encourages and recognises the most responsible behaviours. We work across three major areas: publishing, technology and research culture. We aim to publish work of the highest standards and importance in all areas of biology and medicine, including Human Biology and Medicine, and Neuroscience, while exploring creative new ways to improve how research is assessed and published. We also invest in open-source technology innovation to modernise the infrastructure for science publishing and improve online tools for sharing, using and interacting with new results. eLife receives financial support and strategic guidance from the Howard Hughes Medical Institute, the Knut and Alice Wallenberg Foundation, the Max Planck Society and Wellcome. Learn more at https://elifesciences.org/about.

To read the latest Human Biology and Medicine research published in eLife, visit https://elifesciences.org/subjects/human-biology-medicine.

And for the latest in Neuroscience, see https://elifesciences.org/subjects/neuroscience.

About Inria

Inria is the French national research institute for the digital sciences. World-class research and technological innovation are part of our DNA, with the aim of developing and supporting scientific and entrepreneurial projects that create value for France, within a European perspective.

www.inria.fr