The correlation between PA28γ and C1QBP in the carcinogenesis and development of OSCC.
(A) Representative IHC staining of PA28γ and C1QBP in normal (n=8), OPMD (n=13) and OSCC (n=45) samples. (B) Comparison of the immunoreactive scores (IRSs) of C1QBP between the normal, OPMD and OSCC groups (the data are presented as the means ± SDs; *P<0.05, **P<0.01, ****P<0.0001). (C) Spearman correlation analysis was used to test the correlation between PA28γ and C1QBP in normal, OPMD and OSCC tissues (P<0.0001, r=0.8227). (D) Representative IHC staining of PA28γ and C1QBP in nonmetastatic (n=27) and metastatic (n=18) OSCC patients. (E) Comparison of the IRSs of C1QBP in the nonmetastatic and metastatic OSCC groups (the data are presented as the means ± SDs; *P<0.05). (F) Spearman correlation analysis was used to test the correlation between PA28γ and C1QBP in OSCC tissues (P<0.0001, r=0.6977). (G) Kaplan–Meier analysis of the protein expression of C1QBP in our multicenter OSCC clinical cohort (n=295, P=0.0480). (H) Kaplan–Meier analysis of both low or high protein expression of C1QBP and PA28γ in our multicenter OSCC clinical cohort (n=295, P=0.0100). (I) Kaplan–Meier analysis of the protein expression of C1QBP in TCGA HNSC database (n=259, P=0.025). (J) Kaplan–Meier analysis of both low or high protein expression of C1QBP and PA28γ in TCGA HNSC database (n=259, P=0.033).