Peer review process
Not revised: This Reviewed Preprint includes the authors’ original preprint (without revision), an eLife assessment, and public reviews.
Read more about eLife’s peer review process.Editors
- Reviewing EditorDaniel TakahashiFederal University of Rio Grande do Norte, Natal, Brazil
- Senior EditorKate WassumUniversity of California, Los Angeles, Los Angeles, United States of America
Reviewer #1 (Public review):
Summary:
The authors show that early life experience of juvenile bats shape their outdoor foraging behaviors. They achieve this by raising juvenile bats either in an impoverished or enriched environment. They subsequently test the behavior of bats indoors and outdoors. The authors show that behavioral measures outdoors were more reliable in delineating the effect of early life experiences as the bats raised in enriched environments were more bold, active and exhibit higher exploratory tendencies.
Strengths:
The major strength of the study is providing a quantitative study of animal "personality" and how it is likely shaped by innate and environmental conditions. The other major strength is the ability to do reliable long term recording of bats in the outdoors giving researchers the opportunity to study bats in their natural habitat. To this point, the study also shows that the behavioral variables measured indoors do not correlate to that measured outdoors, thus providing a key insight into the importance of testing animal behaviors in their natural habitat.
Weaknesses:
It is not clear from the analysis presented in the paper how persistent those environmentally induced changes, do they remain with the bats till the end of their lives.
Reviewer #2 (Public review):
Summary:
The authors present a paper that attempts to tackle an important question, with potential impact far beyond the field of animal behavior research: what are the relative contributions of innate personality traits versus early life experience on individual behavior in the wild? The study, performed on Egyptian fruit bats that are caught in the wild and later housed in an outdoor colony, is solidly executed, and benefits greatly from a unique setup in which controlled laboratory experiments are combined with monitoring of individuals as they undertake undirected, free exploration of their natural environment.
The primary finding of the paper is that there is a strong effect of early life experience on behavior in the wild, where individual bats that were exposed to an enriched environment as juveniles later travelled farther and over greater distances when permitted to explore and forage ad libitum, as compared with individual bats who were subjected to a more impoverished environment. Meanwhile, no prominent effect of innate "personality", as assessed by indices of indoor foraging behavior early on, before the bats were exposed to the controlled environmental treatment, was observed on three metrics of outdoor foraging behavior. The authors conclude that the early environment plays a larger role than innate personality on the behavior of adult bats.
Strengths:
(1) Elegant design of experiments and impressive combination of methods
Bats used in the experiment were taken from wild colonies in different geographical areas, but housed during the juvenile stage in a controlled indoor environment. Bats are tested on the same behavioral paradigm at multiple points in their development. Finally, the bats are monitored with GPS as they freely explore the area beyond the outdoor colony.
(2) Development of a behavioral test that yields consistent results across time
The multiple-foraging box paradigm, in which behavioral traits such as overall activity, levels of risk-taking, and exploratoriness can be evaluated as creative, and suggestive of behavioral paradigms other animal behavior researchers might be able to use. It is especially useful, given that it can be used to evaluate the activity of animals seemingly at most stages of life, and not just in adulthood.
Weaknesses:
(1) Robustness and validity of personality measures
Coming up with robust measures of "personality" in non-human animals is tricky. While this paper represents an important attempt at a solution, some of the results obtained from the indoor foraging paradigm raise questions as to the reliability of this task for assessing "personality".
(2) Insufficient exploitation of data
Between the behavioral measures and the very multidimensional GPS data, the authors are in possession of a rich data set. However, I don't feel that this data has been adequately exploited for underlying patterns and relationships. For example, many more metrics could be extracted from the GPS data, which may then reveal correlations with early measures of personality or further underscore the role of the early environment. In addition, the possibility that these personality measures might in combination affect outdoor foraging is not explored.
(3) Interpretation of statistical results and definition of statistical models
Some statistical interpretations may not be entirely accurate, particularly in the case of multiple regression with generalized linear models. In addition, some effects which may be present in the data are dismissed as not significant on the basis of null hypothesis testing.
Below I have organized the main points of critique by theme, and ordered subordinate points by order of importance:
(1) Assessing personality metrics and the indoor paradigm: While I applaud this effort and think the metrics used are justified, I see a few issues in the results as they are currently presented:
(a) [Major] I am somewhat concerned that here, the foraging box paradigm is being used for two somewhat conflicting purposes: (1) assessing innate personality and (2) measuring changes in personality as a result of experience. If the indoor foraging task is indeed meant to measure and reflect both at the same time, then perhaps this can be made more explicit throughout the manuscript. In this circumstance, I think the authors could place more emphasis on the fact that the task, at later trials/measurements, begins to take on the character of a "composite" measure of personality and experience.
(b) [Major] Although you only refer to results obtained in trials 1 and 2 when trying to estimate "innate personality" effects, I am a little worried that the paradigm used to measure personality, i.e. the stable components of behavior, is itself affected by other factors such as age (in the case of activity, Fig. 1C3, S1C1-2), the environment (see data re trial 3), and experience outdoors (see data re trials 4/5).
Ideally, a study that aims to disentangle the role of predisposition from early-life experience would have a metric for predisposition that is relatively unchanging for individuals, which can stand as a baseline against a separate metric that reflects behavioral differences accumulated as a result of experience.
I would find it more convincing that the foraging box paradigm can be used to measure personality if it could be shown that young bats' behavior was consistent across retests in the box paradigm prior to any environmental exposure across many baseline trials (i.e. more than 2), and that these "initial settings" were constant for individuals. I think it would be important to show that personality is consistent across baseline trials 1 and 2. This could be done, for example, by reproducing the plots in Fig. 1C1-3 while plotting trial 1 against trial 2. (I would note here that if a significant, positive correlation were to be found (as I would expect) between the measures across trial 1 and 2, it is likely that we would see the "habituation effect" the authors refer to expressed as a steep positive slope on the correlation line (indicating that bold individuals on trial 1 are much bolder on trial 2).)
(c) Related to the previous point, it was not clear to me why the data from trial 2 (the second baseline trial) was not presented in the main body of the paper, and only data from trial 1 was used as a baseline.
In the supplementary figure and table, you show that the bats tended to exhibit more boldness and exploratory behavior, but fewer actions, in trial 2 as compared with trial 1. You explain that this may be due to habituation to the experimental setup, however, the precise motivation for excluding data from trial 2 from the primary analyses is not stated. I would strongly encourage the authors to include a comparison of the data between the baseline trials in their primary analysis (see above), combine the information from these trials to form a composite baseline against which further analyses are performed, or further justify the exclusion of data as a baseline.
(2) Comparison of indoor behavioral measures and outdoor behavioral measures
Regarding the final point in the results, correlation between indoor personality on Trial 4 and outdoor foraging behavior: It is not entirely clear to me what is being tested (neither the details of the tests nor the data or a figure are plotted). Given some of the strong trends in the data - namely, (1) how strongly early environment seems to affect outdoor behavior, (2) how strongly outdoor experience affects boldness, measured on indoor behavior (Fig. 1D) - I am not convinced that there is no relationship, as is stated here, between indoor and outdoor behavior. If this conclusion is made purely on the basis of a p-value, I would suggest revisiting this analysis.
(3) Use of statistics/points regarding the generalized linear models
While I think the implementation of the GLMM models is correct, I am not certain that the interpretation of the GLMM results is entirely correct for cases where multivariate regression has been performed (Tables 4s and S1, and possibly Table 3). (You do not present the exact equation they used for each model (this would be a helpful addition to the methods), therefore it is somewhat difficult to evaluate if the following critique properly applies, however...)
The "estimate" for a fixed effect in a regression table gives the difference in the outcome variable for a 1 unit increase in the predictor variable (in the case of numeric predictors) or for each successive "level" or treatment (in the case of categorical variables), compared to the baseline, the intercept, which reflects the value of the outcome variable given by the combination of the first value/level of all predictors. Therefore, for example, in Table 4a - Time spend outside: the estimate for Bat sex: male indicates (I believe) the difference in time spent outside for an enriched male vs. an enriched female, not, as the authors seem to aim to explain, the effect of sex overall. Note that the interpretation of the first entry, Environmental condition: impoverished, is correct. I refer the authors to the section "Multiple treatments and interactions" on p. 11 of this guide to evaluating contrasts in G/LMMS: https://bbolker.github.io/mixedmodels-misc/notes/contrasts.pdf