Diminishing neuronal acidification by channelrhodopsins with low proton conduction

  1. School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138
  2. Department of Chemistry, Harvard University, Cambridge, MA 02138
  3. Department of Neurophysiology, University of Wurzburg, Germany
  4. Department of Physics, Harvard University, Cambridge, MA 02138

Editors

  • Reviewing Editor
    Jon Sack
    University of California, Davis, Davis, United States of America
  • Senior Editor
    Merritt Maduke
    Stanford University, Stanford, United States of America

Reviewer #1 (Public Review):

In this manuscript, "Diminishing neuronal acidification by channelrhodopsins with low proton conduction" by Hayward and colleagues, the authors report on the properties of novel optogenetic tools, PsCatCh2.0 and ChR2-3M, that minimize photo-induced acidification. The authors point out that acidification is an undesirable side-effect of many optogenetic approaches that could be minimized using the new tools. ChRs are known to acidify cells, while Arch are known to alkalize cells. This becomes particularly important when optical stimulation is prolonged and pH changes can become significant. pH is known to affect neuronal excitability, vesicular release, and more. To develop novel optogenetic tools with minimal proton conductances, the authors combined channelrhodopsin stimulation with a red-shifted pH sensor to measure pH during optogenetic stimulation. The authors report that optogenetic activation of CheRiff caused slow cellular acidification. 150 seconds of illumination caused a 3-fold increase in protons or approximately a 0.6 unit pH change that returned to baseline very slowly. They also found that pH changes occurred more rapidly, and recovered more rapidly, in dendrites. The authors go on to robustly characterize PsCatCh2.0 and ChR2-3M in terms of their proton conductances, photocurrent, kinetics, and more. They convincingly show that these constructs induced reduced acidification while maintaining robust photocurrents. In sum, this manuscript shows important findings that convincingly characterizes 2 optogenetic tools that have reduced pH artifacts that may be of broad interest to the field of neuroscience research and optogenetic therapies.

Reviewer #2 (Public Review):

In this paper, the authors utilize optogenetic stimulation and imaging techniques with fluorescent reporters for pH and membrane voltage to examine the extent of intracellular acidification produced by different ion-conducting opsins. The commonly used opsin CheRiff is found to conduct enough protons to alter intracellular pH in soma and dendrites of targeted neurons and in monolayers of HEK293T cells, whereas opsins ChR2-3M and PsCatCh2.0 are shown to produce negligible changes in intracellular pH as their photocurrents are mostly carried by metal cations. The conclusion that ChR2-3M and PsCatCh2.0 are more suited than proton conducting opsins for optogenetic applications is well supported by the data.

  1. Howard Hughes Medical Institute
  2. Wellcome Trust
  3. Max-Planck-Gesellschaft
  4. Knut and Alice Wallenberg Foundation