The convergent evolution of animals and robots makes it possible to find principles of locomotion without contingent dependence. (A) A maned wolf and a frogfish. Both species use the ground for locomotion in their environments. (B) Schematic illustration showing the symmetry and modularity of the maned wolf and frogfish bodies. The modules (blue outlined in red) are the joining connected body parts that move together during locomotion. The symmetry plane (green) indicates the bilateral symmetry of the body. Modularity and symmetry are present in phylogenetically distant species. Therefore, they are candidates for being necessary features (principles) of directed locomotion on the ground. (C) Convergent evolution of organisms with no common ancestor (i.e., animals and robots) and just one common behavior (i.e., locomotion) can be used to find principles of this behavior. It allows differentiating a necessary feature for enhanced locomotion from features resulting from the other animal’s functions or contingent on Earth’s evolutionary history. (D) The green and blue-filled circles represent the shape features of terrestrial and aquatic animals with directed locomotion on the ground. The green, orange, and blue unfilled circles represent, respectively, the shape features of robots with directed locomotion on the ground subject to 9.81m/s2 (Earth’s gravity), 3.721 (Mars’s gravity), and 0.1 (gravity plus buoyancy inside the water) acceleration towards the floor. The red intersection at the center represents the convergent features that indicate principles expected to be valid in different gravitational environments and organisms as different as animals and robots. (E) A voxel is the unit constituting the robots. The voxels are connected in different configurations (defining the body shape) and oscillate their volume independently (defining the body control), forming a mass-spring oscillating system. (F) Example of a Voxel-based Soft Robot. The maximum dimension that a robot can occupy is the 43 voxel’s space. (G) We simulate the robots in a physical environment that evaluates effects like gravity, friction, and floor stiffness in the mass-spring system of voxels. (H) The generation cycle is the unit of the robots in silico evolutionary process. The phenotype evaluation is the average speed of the robot in its environment calculated in the 30s of simulation (directed locomotion ability). The best robots are selected, and their genotype (CPPN’s networks) are mutated to produce a new generation of robots that will constitute the next initial population. (I) In each environment (water, mars, and earth), an evolutionary process of 1500 generation cycles results in a sample of robots with different bodies (shape and control) and performances. The shape and control features of the robots are analyzed looking for principles.