Peer review process
Not revised: This Reviewed Preprint includes the authors’ original preprint (without revision), an eLife assessment, public reviews, and a provisional response from the authors.
Read more about eLife’s peer review process.Editors
- Reviewing EditorJenny TungMax Planck Institute for Evolutionary Anthropology, Leipzig, Germany
- Senior EditorCarlos IsalesAugusta University, Augusta, United States of America
Reviewer #1 (Public Review):
Ruby et al. have investigated patterns of age-specific mortality in the exceptionally long-lived naked mole-rat (NMR), under captive conditions. The authors first visited this topic five years previously with an unprecedently large data set and concluded that naked mole-rats are 'non-aging': because analyses of their survival did not detect an increasing mortality hazard with age. This result has obvious applied interest in humans because of its implications for maintaining health into later life. One criticism directed at this previous work was that a limited number 'old-aged' individuals in their data set (individuals in what might be expected to be the latter half of the life course) reduced the power with which to detect an age-related increase in mortality - or to convincingly demonstrate its absence. The current study revisits this topic with a larger sample across the life course. The authors also provide additional analyses that explore various predictors of mortality, including breeding status, body weight and colony size, and now also make direct comparisons to mortality patterns in other species of African mole-rat from the Fukomys clade (which share many convergent social and life history features). I found the analyses of Fukomys mortality particularly illuminating. However, while these additional analyses provide some useful context and can generate interesting discussion points about ageing patterns in an extremely unusual species, the principal issue at hand whether the absence of Gompertzian mortality in NMR is a robust pattern.
In this respect, a major limitation of the current study is that only 11% of the animals (n = 755) had died at the point of its conclusion- the remaining 89% being right-censored (n = 6138). This means that, as in the previous analysis, there are still relatively small numbers of individuals that have died in the older age classes (see Fig 1 for the high level of right-censoring between 15-20 years and the low numbers of deaths after this point, also Supp 1 for the raw data): the part of the life course where one would predict mortality rates to increase from an evolutionary perspective. Thus, while the authors claim very generally that the "demographic data has doubled", this in no way reflects whether the new data is informative to the question at hand, which relies on an ability to estimate death rates in older individuals accurately. If one looks more closely at the numbers which do matter, then one can see that the number of deaths in the data set has shifted from 447 in the former treatment (Ruby et al. 2018) to 755 currently, but that the number of later-stage deaths remains somewhat modest (and that this is probably reflected in the large confidence intervals for the mortality hazards at this time). I therefore remain unconvinced that the current study can rule out an exponential increase in hazard in older individuals.
The authors have also not provided any statistical evidence that the mortality hazard changes with age (or not), instead relying on visual comparisons of aggregated data. This is a fundamental problem and demands a more thorough treatment that compares survival models with different shape profiles. If anything, it seems that the hazard rate is declining with age - see Figures 1B & 2C, and while this may strengthen the authors argument if supported statistically, I would still wonder whether the higher mortality in early life - say 6 months to 3 years of age - is a consequence of the costs of early life development and that this is not a useful baseline against which to compare 'adult' mortality. It would also not overcome the data limitations identified above.
An additional concern is that the paper is selective in its presentation of previous work, with the authors focussing on results which support their main interpretations and glossing over those that don't. For example, the study refers to the fact that NMRs are resistant to various age-related diseases and do not show many age-related declines in physiology. Yet, while this argument of negligible senescence might hold generally, the literature contains various reports of later life declines in NMR physiology (Andziak et al. 2006; Edrey et al., 2011). Referring to work from your own group, Braude et al. (2021) write "several typical mammalian age-related lesions of muscles, bone, heart, liver, and eye, including sarcopenia, osteoarthritis, a decline in articular cartilage thickness of the condyles, lipofuscin accumulation in several organs, eye cataracts, and kidney fibrosis have been described in naked mole-rats older than 26 years (Edrey et al., 2011)". A more balanced treatment of physiology in extremely old individuals would prove constructive.
Another way in which the study fails to fully represent the literature is with respect to the divergence in ageing rates between breeders and non-breeders. This pattern has proved seductive for various mole-rat researchers because of its similarities to social insects and the suggestion that it is reproduction itself which delays ageing. While this is a clear possibility with some empirical support, it is important to also consider the question from the other way: which is to ask why non-breeders die at higher rates than breeders. For other cooperative breeders such as meerkats, the answer is clear: dominant, breeding individuals evict subordinates and once evicted from the group, the chances that these individuals will survive plummets (e.g. Cram et al. 2028). Is it possible that a similar form of dominance control might contribute the shorter life span of non-breeders in captivity? You reference Toor et al. (2020) elsewhere and this is relevant here again.
Captivity also prevents non-breeders from dispersing when they would otherwise ordinarily do so (Braude 2000): is it possible that this also affects their mortality in captivity? Perhaps not being able to disperse induces chronic stress (see for example the discussion in Novikov et al. 2015). The idea that breeders show a lower intrinsic rate of aging is attractive, but many factors could contribute to this and alternatives should be considered unless they can be strongly refuted.
Lastly, it would be very beneficial to have more information on how individuals become breeders in the captive population/s. For the purposes of the analyses, individuals have been categorised as a breeder or a non-breeder based on whether they bred or not at some point in their life (i.e., they are a "breeder" for their whole life for the purposes of the Kaplan Meier curves and the estimation of mortality hazards). I think it is therefore important to rule out the possibility that only high-quality individuals become breeders and that this is what drives the contrast in breeder and non-breeder mortality. In short, is it the case that most breeders are created through the random pairing of a male and a female? Or do new breeders inherit the position once the old queen dies? The latter could lead to breeders being of generally higher quality, which might affect their mortality hazard independently of status.
Overall, I think that the authors can confidently conclude that any onset of actuarial senescence is heavily delayed in naked mole-rats, but the main conclusion that naked mole-rats "defy Gompertzian mortality" is based on inadequate evidence. It seems very possible that the inability to detect an increasing mortality hazard in such a long-lived species arises from data limitations. The central finding of the study should therefore be viewed very critically.
Refs:
Anziak et al. (2006) Aging Cell 5:463-471.
Braude et al. (2021) Biological Reviews 96: 376-293.
Cram et al. (2018) Current Biology 28: 1-6.
Edrey et al. (2011) ILAR Journal 52:41-53.
Novikov et al. (2015) Biogerontology 16: 723-732.
Toor et al. (2020) Animal Behaviour 168: 45-58.
Reviewer #2 (Public Review):
Ruby et al. investigated whether demographic aging was absent in the naked-mole rat (Heterocephalus glaber); an exceptionally long-lived small mammal that appears to challenge Gompertzian patterns of increased mortality hazard with age. In particular, this study replicates a previous one in which the authors show that the mortality hazard does not increase with age as it is expected for mammals, especially small ones. The main motivation of this replication is to address the current controversy surrounding the "perpetual neoteny" reported by the authors. The study also extends to the exploration of the role of social factors on the observed patterns in mortality hazard across age and to a meta-analysis comparing mortality hazards across species of mole-rats which highlights the unique pattern of demographic aging (or the absence of) in naked mole-rats. This study is of broad interest to readers in the field of demography, aging, and life history evolution. The key claims of the manuscript state that naked-mole rats avoid an increase in mortality hazard as they age. Although this work raises new evolutionary questions concerning the unexpected gradual (or fully absent) increase versus Gompertzian increase in hazard among mammals, I also identified weaknesses that I discuss below.
Strengths:
Sample sizes - The sample sizes across analyses are vast and the data curation described demonstrates careful thought during the data analysis processes.
Social factors - The analysis testing associations between body mass (as proxy for dominance) and colony size (as proxy for social competition) are novel and provide insights into potential evolutionary drivers for the observed lack of increase in mortality hazard.
Across species comparison - The analysis using Fukomys mole-rats offered a novel phylogenetic comparison of the mortality hazard across age and raises new evolutionary questions concerning the unexpected gradual versus Gompertzian increase in hazard. This study encourages new ones exploring alternative life histories among mammals.
Weaknesses:
Censored data - A significant number of individuals remained alive (~50%) at the end of the study, and thus I wonder how much can the authors say about increased hazard if the individuals have not reach old ages. Maybe the individuals do live long and show increased hazard are very old ages.
Independence between studies - The study provides the replication of a prior study using the same captive population, but I understand that many observations are not independent across studies given repeated measurements. Although this provides reliability, I wonder how independent the conclusions are. This represents a weakness to me because we still do not know whether this is a unique evolutionary trait of this particular captive population. If this is the case, I agree this makes the population a great model for aging studies but do the authors findings have further implications across populations or species? I wonder if populations raised under different conditions would present similar patterns of mortality hazard across age.
Analysis - Another weakness concerns the analysis used. Authors make the claims that social hierarchy may affect mortality hazards and decide to explore associations between body mass and hazard. I wonder if a Cox regression model is more appropriate for the available continuous data, relative to a Kaplan-Meir method. A Cox regression will allow the authors to control for several continuous variables simultaneously, without the limitation of categorical assumptions. A Cox model could also be extended to time-varying covariates allowing for the hazard to change over time (if that is the case). If the authors understand that their approach is equivalent, I suggest a discussion on it. This also applies to the analysis on colony size.
In summary, I see value in this study. There is vast evidence for the penalty of becoming old among mammals. Thus, studies like this one reporting novel patterns are of high impact. I agree that such findings must be replicated and validated. I also see a lot of potential for the use of the available data for more extensive meta-analyses comparing life histories across social mammals or across species with similar use of habitat (underground). Such analyses may allow the authors to move beyond descriptions and discuss why such life history traits may have evolved. Yet, I am not sure how much novelty this study brings, relative to prior studies. It seems the authors may need more than 5 years to allow their individuals to reach older ages.
Reviewer #3 (Public Review):
As a follow up from a manuscript previously published (Ruby et al. 2018), the authors use basic survival analysis methods to estimate hazard rates on an extended dataset of naked mole rats. They conclude that naked mole rats do not show the common exponential increase in mortality that has been typified in most mammals.
In fact, this species has attracted great interest due to their extreme longevity, and the physiological mechanisms that have been associated with slower aging. As the authors show, this species shows unprecedented longevity, particularly considering their body size and phylogenetic location.
However, the data available and the methods used cannot support the conclusion of an absence of increase in mortality for adults. As the authors show, the survivorship curves, calculated using Kaplan-Meier estimators, do not reach below values of 0.5. In short, nothing can be said about hazard rates after the age of median life expectancy. What the authors show is that, up to a certain age (when at least 50% of the individuals are still alive), the hazard rate is relatively constant. Beyond that age, the authors cannot draw any conclusions.
In addition, here is a summary of the methodological limitations I could find based on their limited description: 1) their survivorships do not go below 0.5 and thus cannot make any statements about actuarial senescence; 2) ignoring this last, to test whether the hazards follow a Gompertz mortality it would be more appropriate to use maximum likelihood and test alternative models (e.g., exponential, Siler), and not visually as they show in fig 1; 3) they seem to be confusing left-censoring with left-truncation; 4) given the left-truncation, they should be using product limit estimators and not Kaplan-Meier estimators (which they might, but it's not possible to know based on the limited description of the methods); 5) their treatment of the effects of colony size, breeding status, and body weight should be at least by means of a proportional hazards, not a simple visual inspection on arbitrary age intervals.
In light of these limitations, I would rank the significance of the study as not more than useful, and the strength of evidence inadequate. Still, and as I've stated above, this species is of great interest for ageing research, and the extensive work that the authors have done maintaining this captive colony is to be commended.