Peer review process
Not revised: This Reviewed Preprint includes the authors’ original preprint (without revision), an eLife assessment, and public reviews.
Read more about eLife’s peer review process.Editors
- Reviewing EditorChima NwaoguUniversity of Cape Town, Cape Town, South Africa
- Senior EditorDetlef WeigelMax Planck Institute for Biology Tübingen, Tübingen, Germany
Reviewer #1 (Public Review):
This study is one of several around the world to investigate how urban wildlife responded to changes in human activity during the lockdowns associated with the COVID-19 pandemic. Unlike several other studies on the topic that used observational data from citizen science programs, this project relied on passive acoustic monitoring to record bird vocalizations during and after stringent lockdown periods in an urban environment. The authors focused on three species that differ in their level of adaptation to human presence, providing an ecologically relevant comparison that highlights the importance of micro-habitats for species living in close proximity to humans.
Strengths:
The element that most sets this study apart from previous studies examining responses to COVID-19 lockdowns is the use of passive acoustic monitoring. As the authors describe, this method offers several advantages over other methods (though, it does come with some limitations on what questions can be addressed). Perhaps the most relevant advantage is that it offers the ability to concurrently measure anthropogenic noise in the environment, which is one of the most likely mechanisms for human activity changes effects on wildlife. To my knowledge, only one other study (Derryberry et al. Science. 2020) has used recordings of vocalizations to examine the influence of COVID-19 lockdowns on birds. (Note, while these authors do reference Derryberry et al., I thought that there could have been much more direct comparison between the results of the two approaches).
It was encouraging to see a study that focused on local-scale impacts of lockdowns, with methods that could investigate effects within microhabitats. Logistics prevented many other projects from operating at such fine scales. These data also came from a country/municipality that had very defined lockdown periods known with certainty to the day (as opposed to a gradual shift in voluntary human activity, as occurred in much of North America), making the results from this study particularly useful for the examination of rapid changes in bird behavior.
Weaknesses:
One important drawback of the approach, which potentially calls into question the authors' conclusions, is that the acoustic sampling only occurred during the pandemic: for several lockdown periods and then for a period of 10 days immediately after the end of the final lockdown period in May of 2020. Several relevant things changed from March to May of 2020, most notably the shift from spring to summer, and the accompanying shift into and through the breeding season (differing for each of the three focal species). Although the statistical methods included an attempt to address this, neither the inclusion of the "count down" variable nor the temperature variable could account for any non-linear effects of breeding phenology on vocal activity. I found the reliance on temperature particularly troubling, because despite the authors' claims that it was "a good proxy of seasonality", an examination of the temperature data revealed a considerable non-linear pattern across much of the study duration. In addition, using a period immediately after the lockdowns as a "no-lockdown" control meant that any lingering or delayed effects of human activity changes in the preceding two months could still have been relevant (not to mention the fact that despite the end of an official lockdown, the pandemic still had dramatic effects on human activity during late May 2020).
Another weakness of the current version of the manuscript is the use of a supposed "contradiction" in the existing literature to create the context for the present study. Although the various studies cited do have many differences in their results, those other papers lay out many nuanced hypotheses for those differences. Almost none of the studies cited in this manuscript actually reported blanket increases or decreases in urban birds, as suggested here, and each of those papers includes examples of species that showed different responses. To suggest that they are on opposite sides of a supposed dichotomy is a misrepresentation. Many of those other studies also included a larger number of different species, whereas this study focused on three. Finally, this study was completed at a much finer spatial scale than most others and was examining micro-habitat differences rather than patterns apparent across landscapes. I believe that highlighting differences in scale to explain nuanced differences among studies is a much better approach that more accurately adds to the body of literature.
Reviewer #2 (Public Review):
In this study, the authors tried to gauge the effect of human activity on three species, (1) the Hooded grow, an urban exploiter, (2) the Rose ring parakeet, an invasive, alien species that has adapted to exploit human resources, and (3) the Graceful Prinia, an urban adapter, which is relatively shy of humans. A goal of the study was to increase awareness of the importance of urban parks.
Strengths:
Strengths of the study include the fact that it was conducted at 17 different sites, including parks, roads and residential areas, and included three species with different habitat preferences. Each species produced relatively loud and repeatable vocalizations. To avoid the effect of seasonal changes, sounds were sampled within a 10 day period of the lockdown as well as post-lockdown. The analysis included a comparison of the number of sound files, binary values indicating emission of a common syllable, and also the total number of syllables emitted as a measurement of bird activity. Ambient temperatures and sound levels of human activity were also recorded. All of these factors speak to the comprehensive approach and analysis adopted in this study. The results are based on a rigorous statistical analysis, ruling out effects of various extraneous parameters.
Weaknesses:
The explanation of methods can be improved. For example, it is not clear if data were low-pass filtered before resampling to avoid aliasing.
It is quite possible that birds move into the trees and further from the recorders with human activity. Since sound level decreases by the square of the distance of the source from the recorders, this could significantly affect the data. As indicated in the Discussion, this is a significant parameter that could not be controlled.
In interpreting the data, the authors mention the effect of human activity on bird vocalizations in the context of inter-species predator-prey interactions; however, the presence of humans could also modify intraspecies interactions by acting as triggers for communication of warning and alarm, and/or food calls (as may sometimes be the case) to conspecifics. Along the same lines, it is important to have a better understanding of the behavioral significance of the syllables used to monitor animal activity in the present study.
Another potential effect that may influence the results but is difficult to study, relates to the examination of vocalizations near to the ambient noise level. This is the bandwidth of sound levels where most significant changes may occur, for example, due to the Lombard effect demonstrated in bird and bat species. However, as indicated, these are also more difficult to track and quantify. Moreover, human generated noise, other than speech, may be a more relevant factor in influencing acoustic activity of different bird species. Speech, per se, similar to the vocalizations of many other species, may simply enrich the acoustic environment so that the effects observed in the present study may be transient without significant long-term consequences.
In general, the authors achieved their aim of illustrating the complexity of the effect of human activity on animal behavior. At the same time, their study also made it clear that estimating such effects is not simple given the dynamics of animal behavior. For example, seasonality, temperature changes, animal migration and movement, as well as interspecies interactions, such as related to predator-prey behavior, and inter/intra-species competition in other respects can all play into site-specific changes in the vocal activity of a particular species.