Abstract
Glucocorticoid (GC) variation has long been thought to reflect variation in organismal ‘stress’, but associations between GCs and Darwinian fitness components are diverse in magnitude, direction, and highly context-dependent. This paradox reveals our poor understanding of the causes of GC variation, contrasting with the detailed knowledge of the functional consequences of GC variation. Amongst other things, GCs orchestrate energy availability, to anticipate and recover from predictable and unpredictable environmental fluctuations and challenges. Although this is mechanistically well-known, the extent to which GC levels are quantitatively explained by energy metabolism is unresolved. We investigated this association through meta-analysis, selecting studies of endotherms in which (1) an experiment was performed that affected metabolic rate and (2) metabolic rate and GC-levels were measured simultaneously. We found that an increase in metabolic rate was associated with an increase in GC levels in 20 out of 21 studies (32 out of 35 effect sizes). More importantly, there was a strong positive correlation between the increases in metabolic rate and GCs (p=0.003). This pattern was similar in birds and mammals, and independent of the nature of the experimental treatment. We conclude that metabolic rate is a major driver of GC variation within individuals. Stressors often affect metabolic rate, leading us to question whether GC levels provide information on ‘stress’ beyond the stressor’s effect on metabolic rate.
Introduction
The accepted - but often overlooked - metabolic role of glucocorticoids
Glucocorticoid hormones (GCs; e.g. cortisol, corticosterone) were identified by Hans Selye (1907-1982) as the key molecular mediators of the ‘stress reaction’, and named in reference to their capacity to increase glucose in blood. Selye highlighted the fundamental role of GCs in the ‘general adaptation syndrome’ - i.e. “the physiological mechanisms that help to raise resistance to damage as such, irrespective of the specific nature of the damaging agents” (Selye 1950). In this view, GCs play a role in ‘adapting’ to the challenge, by triggering mechanisms that help the organism return to, or maintain, homeostasis after an environmental challenge. Indeed, towards the later stages of his career, Selye’s definition of stress was “the nonspecific response of the body on any demand on it” (Selye 1976), making the point that very different stimuli (i.e. ‘stressors’) triggered the same response. However, in the literature this perspective has changed over time, and ‘stress’ and, by extension, GCs, have been widely linked to negative outcomes (but see Koolhaas et al. 2011; Herman 2022). Consequently, researchers in fields from biomedicine to conservation physiology and animal husbandry have focused on GCs to find proxies of ‘physiological and/or psychological stress’ to evaluate physical and/or welfare status. Indeed, GCs have predominated over other traits throughout the stress physiology literature, to the point of being referred to as vertebrate ‘stress hormones’ (Madliger et al. 2015; Madliger & Love 2014; McCormick & Romero 2017). While several authors have argued against this simplified view of GC regulation during the past decades (e.g. Koolhaas et al., 2011; MacDougall-Shackleton et al. 2019; Herman 2022; Romero 2004; Landys et al. 2006; Bonier et al. 2009), such association prevails, in the sense that publications still abound in which GC levels are assumed to provide information on organismal stress.
The focus on GCs to measure organismal stress can be understood from their role as key mediators of organismal responses to challenges, triggering a cascade of effects on many physiological systems (Koolhaas et al., 2011; Sapolsky, Romero & Munck, 2000; Deviche et al. 2017; Zimmer et al. 2019; Zimmer et al. 2020). Furthermore, acute increases in circulating GCs are a defining aspect of the so-called “stress response” (Koolhaas et al., 2011; Sapolsky et al. 2000). Consequently, higher GC levels circulating in plasma or deposited in keratinized tissues (i.e. hair or feathers) have traditionally been interpreted as an indication of homeostatic unbalance, poor condition, implicating low fitness prospects (reviewed in Schoenle et al. 2021, Romero & Fairhurst 2016). However, the latter assumption is at best poorly supported by the literature, with associations between GCs and fitness (survival / reproduction) being diverse in direction and often non-existent (Schoenle et al. 2021; Zimmer et al. 2022; Busch & Hayward 2009; Bonier et al. 2009; Petrullo et al. 2022). This inconsistency raises the question what alternative inference can be made from GC-variation. The urgency of this question is further underlined by the observation that GCs also increase in response to experiences we would not normally qualify as stress; for example, sexual activity induces a GC increase in humans, horses and rodents (Siciliani 2000; Colborn et al. 1991; Buwalda et al. 2012). We suggest that this question can potentially be resolved through a better understanding of physiological mechanisms and environmental factors driving GC variation.
Selye (1976) emphasised that homeostatic challenges of any kind lead to increases in body demands, loosely defined as “the rate at which we live at any one moment”. Activation of the Hypothalamus-Pituitary-Adrenal (HPA) axis, represents a primary hormonal response to homeostatic challenges that, through the release of GCs, mobilises the resources needed to fuel the current or anticipated rise in energy expenditure (current and anticipatory responses) or recover from an immediate threat that induced an unanticipated increase in energy expenditure (reactive response) (Herman et al. 2016, McEwen & Wingfield 2003). In this context, GCs are involved in the metabolism of most types of energy reserves, modulating glucose, fat and protein metabolism in liver, skeletal muscle, and other target tissues (Box 1). Allusions to the energetic role of GCs and their tight link to energy expenditure are common in physiological and ecological studies, especially those using approaches which underline the adaptive function of GC responses (McEwen & Wingfield 2003; Landys et al. 2006; Romero et al. 2009; Deviche et al. 2017), but the extent to which GC variation can be quantitatively explained as facilitator of variation in energy expenditure has rarely been addressed (but see Jimeno et al. 2018, Malkoc et al. 2021 supplementary information). We here schematically review the role of GCs in energy metabolism (Box 1), and investigate this link quantitatively through meta-analysis.
Revisiting the associations between GCs and metabolic rate. A meta-analytic approach
Although previous evidence supports the link between energy expenditure and GC secretion (e.g. Koolhaas et al. 2011; Sapolsky et al. 2000; Beerling et al. 2011; Buwalda et al. 2012; Jimeno et al. 2018; Malkoc et al. 2021 supplementary information), the qualitative importance of both this association and the underlying processes to explain GC variation remains unexplored; this is however fundamental towards accurately interpreting GC variation. We here test whether changes in energetic demands are associated with variation in GC levels. Specifically, we (i) use a meta-analytic approach to test whether experimental manipulations leading to increases in metabolic rate in endotherms also lead to an increase in GCs (qualitative approach). We included only experimentally-induced increases of energy expenditure to avoid potential masking effects of anticipatory responses or delayed effects of GCs. Because metabolic rate and GCs can fluctuate rapidly, we targeted metabolic rate and GC measurements taken simultaneously or when animals could be assumed to be in the same physiological state (e.g. within the same day and experimental treatment). We further investigated (ii) whether the magnitude of the experimentally induced changes in metabolic rate and GCs were correlated (quantitative approach) through meta-regression. Our predictions are that (i) increases in metabolic rates are associated with increases in plasma GC concentrations, (ii) that changes in GCs are proportional to induced changes in metabolic rate, and (iii) that the association between increases in metabolic rate and GCs is independent of the treatment used to increase the metabolic rate.
BOX 1:
Glucocorticoids and energy metabolism
We here consider GC regulation from the perspective of their role in fuelling metabolic rate. When metabolic rate is low, for example during periods of inactivity, circulating GCs are maintained at low levels and glucose release from fuel stores is released in the blood stream at a low rate matching the modest metabolic needs. (permissive actions; Sapolsky et al. 2000; Fig. 1). An increase in metabolic rate can be anticipated or unanticipated (GCs will exert preparative or stimulating actions, respectively; Sapolsky et al. 2000; Fig. 1), and acute or gradual. Unanticipated but gradual increases in metabolic rate will occur for example when thermoregulatory costs unexpectedly increase.
In both gradual and acute increases in metabolic rate, a main role of GCs is to increase circulating glucose at a rate matching the metabolic requirements through diverse mechanisms. Decreasing plasma glucose levels trigger a series of hormonal changes that promote a switch in energy usage. Together with a decrease of insulin, GCs are released into the circulation (Andrews & Walker 1999; Rosmond & Bjorntorp 2000) reducing anabolic insulin actions (Vegiopoulos & Hertzig 2007). Blood glucose level then increases, both by mobilization from existing stores, and by inhibition of further storage. GCs also inhibit glucose uptake and glycogen synthesis in the liver, redirecting resources to gluconeogenesis and glycogenolysis, along with glucagon and catecholamines as part of the most immediate acute response. Catecholamines act quickly and increase within seconds to induce the release of energy needed to fuel the response (Herman et al. 2016; Romero & Beattie 2021; Sapolsky et al. 2000). The GC response lags in time -as GCs are produced de novo at the adrenal and take minutes to be secreted– and lasts substantially longer, depending on active (feedback signalling) and passive (GC degradation) processes (Herman et al., 2016; Fig. 1), enhancing and prolonging the increase in blood glucose (Nonogaki 2000; Romero & Beattie 2021), or recovering energy stores after a brief burst of activity. In addition, inhibition of peripheral glucose transport and utilization in response to GCs increases the availability for other tissues, such as the brain (reviewed in Sapolsky et al. 2000; Herman et al. 2016). GCs also act in other substrates, further increasing lipolysis by inducing hormone-sensitive lipase (Slavin et al. 1994), and reducing lipoprotein lipase activity in peripheral fat depots. They also promote pre-adipocyte differentiation, pro-lipogenic pathway activity, and cellular hypertrophy in central fat (Vegiopoulos & Hertzig 2007) as well as decreased thermogenesis in brown adipose tissue (Soumano et al. 2000). In various muscle types, GCs suppress protein synthesis while promoting protein degradation and amino acid export. When the energetic and substrate requirements of the organism are further increased (e.g. during fasting or illness), muscle tissue (40% of total body mass) becomes a rich source of amino acids, which can be mobilized as substrates for energy generation, gluconeogenesis and protein synthesis (Kuo et al. 2013).
Given the existing evidence on the metabolic role of GCs, and the different time scales associated to the kind of response (anticipatory vs perceived) as well as to the hormones and substrates’ physiological actions (see above), GC concentrations cannot be expected to always reflect the ‘immediate’ energy expenditure. However, we would expect changes in energetic demands to always require a GC response/input to meet the derived metabolic needs (Fig. 1). This prediction of a strong association between GCs and metabolic rate, however, is not well researched, and does not necessarily imply that one trait necessarily affects the other per se, as their interplay is likely to be shaped by the environmental or physiological context. Note further that we make no distinction between baseline and stress-induced GC-levels, and thereby in effect assume these to be points in a continuum from a metabolic perspective; a perspective supported by the monotonic effects of GCs on glucose uptake and fat depletion (Kattwinkel & Munck 1966; Dallman et al. 1993). Additionally, although we consider GCs to be regulated to meet energetic demands, we are aware GCs have many complex downstream effects at both baseline and stress-induced levels, besides energy-mobilization (Fig. 1).
Methods
Literature search
We reviewed the literature to identify empirical studies reporting measurements of both metabolic rate and plasma GCs. We compiled studies that met all following criteria: (1) Including an experimental manipulation of any kind leading to increases in metabolic rate which was quantified (i.e. being or not significant). Among these, we also included those studies reporting heart rate as a metabolic measure, as heart rate and metabolic rate are strongly correlated (Bevan et al. 1994; Bevan et al. 1995; Butler et al. 2004, Word et al. 2022). (2) Including measurements of natural GC concentrations in plasma (i.e. not exogenous or chemically induced –e.g. with ACTH or CRH). (3) measurements of GCs and metabolism had to be on the same individuals and measured in the same physiological state. The latter condition excludes, for example, studies with daily energy expenditure measurements combined with GCs measured at one time-point. Finally, we only included studies on endotherms (birds and mammals), because metabolic regulation differs strongly between endotherms and ectotherms.
We conducted a database search (Web of Science, 20/07/2021) to identify candidate studies, using the following two combinations of search terms: “energy expenditure” AND (glucocorticoid OR cortisol OR corticosterone) and “metabolic rate” AND (glucocorticoid OR cortisol OR corticosterone). After the search, we consecutively selected articles after a) abstract review, b) full text review and c) data availability for effect size calculations. Using this approach, we identified a total of 14 studies that met all our criteria (see Table S1 for additional information on the number of studies obtained on each of the search steps). We also systematically checked the reference list of these 14 papers, which yielded an additional 7 papers. Thus, we included a total of 21 papers in our analyses, of which 12 were on birds, and 9 on mammals. Nine of the 22 papers included more than one experimental treatment, yielding a total of 35 effect sizes. For each of these studies, we extracted information on study species or metabolic and GC variables reported, among others (Table S2). Additionally, we recorded variation related to the experimental design, the variables that were quantified, and the type of treatment used: a) Before / after design: whether the experimental manipulation included a time effect (i.e. individuals served as their own control, being measured before and after the experimental manipulation); b) Experiment / control design: Whether the experiment accounted for within-individual variation (i.e. all individuals went through all experimental treatments); c) Whether metabolic rate or heart rate was the metabolic variable; and d) The type of treatment that induced an increase in metabolic rate (see below) (Table S2).
Effect size calculations
To estimate effect sizes of metabolism and GCs, we used the web-based effect size calculator Practical Meta-Analysis Effect Size Calculator (www.campbellcollaboration.org/escalc/html/EffectSizeCalculator-Home.php), following Lipsey & Wilson 2000 and Nakagawa & Cuthill 2007. We calculated standardized mean-difference effect sizes (Cohen’s D), which we computed from means and standard deviations (19 studies) or t-test (2 studies). When metrics were presented graphically only, we extracted data from the figure(s) using the GetData Graph Digitizer software (http://getdata-graph-digitizer.com/). See Table S3 for details on data extraction and effect size calculations.
For each study, we compared the mean metabolic rate and level of plasma GCs of individuals in the treatment group(s) to that of individuals in the control group. For studies in which treatment was confounded with time, because pre-treatment measurements were used as control and compared with measurements during treatment, the pre-treatment measure was used as control when calculating effect sizes in studies where there was a single treatment. When studies with a before-after design included more than one experimental treatment, the treatment yielding the lowest metabolism was taken as control for the effect size calculations. Thus, confounding time with treatment was avoided whenever possible.
Statistical analyses
We conducted all meta-analyses using the rma.mv function from the metafor package (Viechtbauer 2010), implemented in R (version 4.0.1, R Core Team 2020). Standard errors were used for the weigh factor. All models contained a random intercept for study identity to account for inclusion of multiple experimental treatments or groups from the same study. Most species were used in a single study, and we therefore did not include species as a random effect in addition to study identity. The number of species was however insufficient to reliably estimate phylogenetic effects, we therefore limited the analysis in this respect with a comparison between birds and mammals (see below). The dependent variable was either the metabolic rate or the GC effect size. One model was fitted with the metabolic rate effect size as a dependent variable, to estimate the average effect on metabolic rate across all studies in the analyses. All other models had the GC effect size as dependent variable, and metabolic rate effect size as a moderator. Distribution of metabolic rate effect sizes was skewed which was resolved by ln-transformation, which yielded a better fit when compared to a model using the linear term (evaluated using AIC, see results for details). Our first GC model contained only the metabolic rate effect size as a fixed independent variable. This model provides a qualitative test of whether GC levels increase when metabolic rate is increased and tests prediction (i) by providing an estimate of the intercept, which represents the average GC effect size because we mean centered the ln-transformed metabolic rate effect size (Schielzeth 2010). The same model tests prediction (ii) whether the GC effect increases with an increasing metabolic rate effect size, which will be expressed in a significant regression coefficient of the metabolic rate effect size.
Following the model with which we tested our main predictions, we ran additional models to test for the effects on GC effect sizes of (a) taxa (birds vs. mammals), two design effects, namely (b) before / after effect, and (c) experiment / control effect, (d) metabolic variable measured (metabolic rate or heart rate), (e) type of treatment (categorized in climate, psychological, or other). This last factor tests our prediction iii. We included these variables as modulators in the analysis, as well as the two-way interactions of these factors with the metabolic rate effect size. All factors were coded as 1 (bird / no before – after effect / no experiment-control effect / metabolic rate) or 2 (mammal / before-after effect / experiment-control effect / heart rate), and then mean-centered. Treatment type was categorized as 1 (climate), 2 (psychological), or 3 (others). We compared models with vs. without these additional variables using Akaike’s Information Criterion, with correction for small sample sizes (AICc, Akaike, 1974)) for which a change in AICc of 2 is considered significant (Burnham, Anderson & Huyvaert 2011). Models within IZAICc < 2 were considered best fitting models, and we further explored the effects of the main predictors when present in these top models. To rule out publication bias effects (i.e. regression test for funnel plot asymmetry), we included a weighing variable (square root of the sample size) as moderator in the models, as Egger’s test is not a reliable test of funnel plot asymmetry in multilevel models. Variable effects and results remained quantitatively very similar and qualitatively unchanged.
Results
Among the studies selected for inclusion in the analysis, the treatment effect size on metabolic rate (MR) was on average 1.85 ± 0.87 (Fig. S1). In accordance with prediction, effects on GCs were positive in the majority of cases (32/35; Fig. 2), and consequently the overall average effect size deviated significantly from zero, with the average GC effect size estimated at 0.73 ± 0.11 (Table 1). There was a strong association between MR effect sizes and GC effect sizes (Table 1, Fig. 3), thus confirming prediction ii. It is further worth noting that the residual heterogeneity did not exceed the level expected by chance (Table 1). MR Cohen’s D was Ln-transformed (see methods) to normalize the distribution (Fig. S2), and AICc of models including Ln MR were significantly lower when compared to models including untransformed MR Cohen’s D (AICc = 70.58 vs 74.97, respectively).
The association between MR and GC effect sizes remained statistically significant when adding Taxa, before / after, experiment / control effect, metabolic variable or treatment type one by one to the model. Furthermore, none of these variables had a significant effect on GC effect size, nor did the association between MR and GC effect sizes depend on those factors (i.e. interactions between these variables and MR effect sizes were always non-significant; Table 2, S4). The latter result confirms prediction iii. Given that none of these effects significantly improved the model, the final model when removing all factors was the one including MR effect size as only predictor of GC effect size (Table 1). Despite these modulators being non-significant, the associations were in the expected directions, with studies including within-individual variation (i.e. experiment / control effect), and not including a before / after effect reporting higher GC effect sizes (Table S4, Fig. S3).
Discussion
Finding a consistent interpretation of GC variation has proven challenging, and to this end we presented a simplified framework focusing on the interplay between energy metabolism and GCs (Box 1). Based on this framework, we made three predictions that we tested through a meta-analysis of studies in endotherms in which metabolic rate was manipulated and GCs were measured at the same time. The analysis confirmed our predictions, showing that experimental manipulations that increased metabolic rate induced a proportional increase in GCs (Fig.3), and our interpretation of this effect is that GC secretion facilitated increases in MR. This association indicates that fluctuations in energy turnover are a key factor driving variation in GC levels. From this perspective, the many downstream effects of GCs (e.g. down regulation of immune function and reproduction, enhanced learning; McEwen & Wingfield 2003; Sapolsky et al. 2000) may be interpreted as allocation adjustments to the metabolic level at which organisms operate.
The effect of metabolic rate on GC levels was independent of the type of manipulation used to increase metabolic rate, confirming our third prediction. Note however that confirmation of this prediction relied on the absence of a significant effect, and absence of evidence is not evidence of absence. However, the residual heterogeneity of our final model did not deviate from a level expected due to sampling variance, providing additional support for our third prediction.
We restricted the meta-analysis to experimental studies, and expect the association between MR and GCs to be less evident in a more natural context. Associations between GCs and MR will be most evident when animals are maintained at different but stable levels of metabolic rate, because then the rate at which tissues are fuelled is likely to be in equilibrium with the metabolic needs. While equilibrium conditions can be created in laboratory studies, conditions will usually be more variable in the wild. When metabolic rate fluctuates, e.g. due to short term variation in activity, GC variation will track metabolic rate fluctuations, but with a time lag (Box 1), thus adding complexity to the MR / GC association and its detectability. Furthermore, experiments yield estimates of associations within the average individual in the study, while data collected in a natural context usually rely on variation between individuals (but see Malkoc et al. 2022). Associations between individuals will be less strong than associations within individuals due to individual variation in GC levels and GC reactivity (e.g. Liu et al. 1997; Weaver et al. 2004; Yehuda et al. 2014; Taff et al 2018, 2022). Between subject variation is likely to be even larger on an interspecific level, and in line with this expectation the comparative evidence on the MR / GC association is mixed. While a strong positive MR / GC correlation was reported for mammals (Haase et al 2016), Francis et al (2018) found no consistent GC / MR association in birds and other tetrapod taxa. However, recent comparative analyses showed avian GC variation to be positively correlated with estimated thermoregulatory costs (Rubalcaba & Jimeno 2022), and GC variation in lizards to be positively correlated with body temperature, which directly influences metabolic rate in ectotherms (Rubalcaba & Jimeno in press). The contrast between the findings may be due to the MR and GC data not always being collected on individuals in a comparable state. We emphasize therefore the importance of measuring metabolic rate and GCs when animals are in the same state, preferably by measuring both variables at the same time.
GCs increased in the studies included in our meta-analysis in response to an induced increase in MR, but GCs can also increase in response to an anticipated increase in MR (Box 1). For example, the early morning GC increase in humans, known as the ‘cortisol awakening response’ (Fries et al 2009) can be interpreted as preparation for an increase in MR – indeed “early birds” show higher GC-levels than “night owls” in the hour after awakening (Kudielka et al 2006). Likewise, GC levels increase in athletes preceding competition (van Paridon et al 2017), although separating effects of psychological stress from anticipated metabolic needs is difficult in this context. Experiments in which animals are trained to anticipate an increase in MR to investigate whether this generates an anticipatory increase in GCs would be an interesting additional test of the framework laid out in Box 1.
Given that GC levels are often assumed to provide information on organismal ‘stress’ and welfare, the question arises whether the observed pattern can be the consequence of effects on psychological stress instead of metabolic rate. This question arises because manipulations of energy expenditure are always ‘indirect’, in that an external treatment is used to induce an increase in metabolic rate, as opposed to a direct manipulation of metabolic rate, and this leaves room for other factors to cause the observed effects. While we acknowledge that it is not possible to demonstrate conclusively that a process is not happening, we consider it unlikely that ‘stress effects’ explain our findings. Firstly, because the way metabolic rate was manipulated varied widely between studies but manipulation type had no discernible effect on the MR / GC association. This was also the conclusion of one of the studies included in our meta-analysis, designed specifically to compare MR / GC associations between two MR increasing treatments, ambient temperature and noise as psychological stressor (Jimeno et al 2018). Secondly, the finding that the GC increase was proportional to the increase in MR can only be explained by psychological stress when the induced psychological stress was proportional to the induced MR. Thirdly, the pattern is consistent with what is known of the functional consequences of GC variation (Box 1). Lastly, diverse non-injurious psychological stressors increase metabolic rate in humans (Sawai et al. 2007, Balanos et al. 2010, Carroll et al. 2009), mammals (Harris et al. 2006; mild and unpredictable chronic stress; García-Díaz et al. 2007) and birds (Jimeno et al. 2018), explaining why GCs generally increase in response to a stressor. We conclude therefore that while a causal link between MR and GCs is not the only possible explanation of our findings, we argue it to be the most parsimonious explanation. Direct manipulations of MR are challenging, but could confirm or reject this explanation, and may for example be achieved using thyroid hormones, which have been shown to affect MR (Moreno et al. 2002, Kim 2008). Additionally, it would be informative to investigate whether energy turnover immediately before blood sampling is a predictor of GC levels, as we would predict on the basis of the interpretation of our findings. Increasing the use of devices and techniques that monitor energy expenditure or its proxies (e.g. accelerometers) may be a way to increase our understanding of the generality of the GC-MR association.
Authors that assumed GC levels to be a proxy of physiological stress have struggled with the interpretation of findings such as the mixed results with respect to fitness consequences of GC-variation. Our findings offer a way to interpret such variation: GCs are regulated with respect to their role in facilitating energy metabolism, and we encourage researchers to approach and interpret findings from this perspective. For example, a positive association between GCs and reproductive success may indicate that individuals that are able to sustain high metabolic rates attain higher fitness (e.g. Bauch et al, 2016), while a negative association indicates the opposite effect (e.g. Ouyang et al 2013; see Atema et al., 2021, for a more general discussion of this specific contrast). Given that GCs have many other downstream effects (Sapolsky et al. 2000), for example supressing immune function (Cain & Cidlowski 2017), and growth (Allen 1996), this may seem an overly simplistic approach. However, in this framework, downstream effects of GCs can be understood as responses to a system level readout of the current level of energy metabolism, with high levels affecting the allocation of energy to different energy demanding processes. In this view, the link between GCs and energy demanding processes is asymmetric, in the sense that GCs affect energy allocation to e.g. growth, but there is no direct feedback from growth to GC levels. In conclusion, whereas GCs are widely seen as ‘stress hormones’, we offer a different interpretation and question whether GC variation reveals any physiological stress beyond fluctuations in energy expenditure.
Supporting information
Funding
BJ was funded by grant FJC2019-039748-I of MCIN/AEI /10.130 39/501100011033.
Supplementary information
Table S2: Table with the information extracted from each study included in the meta analysis (excel sheet available).
Table S3: Effect size calculations. The document Includes one sheet per study with the data extracted, the part of the article it was extracted from, and the effect size calculations and results further included in the meta analysis and Table S2 (excel sheets available).
References
- References marked with an asterisk were included in the meta-analysis but not otherwise cited in the paper.
- A New Look at the Statistical Model IdentificationIEEE Transactions on Automatic Control 19:716–723https://doi.org/10.1109/TAC.1974.1100705
- Growth suppression by glucocorticoid therapyEndocrinology and metabolism clinics of North America 25:699–717
- Glucocorticoids and insulin resistance: old hormones, new targetsClinical Science 96:513–523https://doi.org/10.1042/CS0960513
- Telomere dynamics in relation to experimentally increased locomotion costs and fitness in great titsMolecular Ecology https://doi.org/10.1111/mec.16162
- Metabolically exaggerated cardiac reactions to acute psychological stress: the effects of resting blood pressure status and possible underlying mechanismsBiological Psychology 85:104–111
- Telomere length reflects reproductive effort indicated by corticosterone levels in a long-lived seabirdMolecular Ecology 25:5785–5794
- Physiological and hormonal responses to novelty exposure in rats are mainly related to ongoing behavioral activityPhysiology & behavior 103:412–420
- The use of heart rate to estimate oxygen consumption of free-ranging black-browed albatrosses Diomedea melanophrysThe Journal of experimental biology 193:119–137
- Daily energy expenditure of tufted ducks: a comparison between indirect calorimetry, doubly labelled water and heart rateFunctional Ecology :40–47
- Do baseline glucocorticoids predict fitness?Trends in ecology & Evolution 24:634–642
- Physiological and behavioural responses to short-haul transport by stock trailer in finished steersCanadian journal of animal science 87:291–297
- Behavioral and physiological responses of wild-caught European starlings (Sturnus vulgaris) to a minor, rapid change in ambient temperatureComparative Biochemistry and Physiology Part A: Molecular & Integrative Physiology 160:260–266
- Artificial rain and cold wind act as stressors to captive molting and non-molting European starlings (Sturnus vulgaris)Comparative Biochemistry and Physiology Part A: Molecular & Integrative Physiology 164:512–519
- AIC model selection and multimodel inference in behavioral ecology: Some background, observations, and comparisonsBehavioral Ecology and Sociobiology 65:23–35https://doi.org/10.1007/S00265-010-1029-6/FIGURES/3
- Stress in a conservation context: a discussion of glucocorticoid actions and how levels change with conservation-relevant variablesBiological Conservation 142:2844–2853
- What causes intraspecific variation in resting metabolic rate and what are its ecological consequences?Proceedings of the Royal Society B: Biological Sciences 278:3465–3473
- Measuring metabolic rate in the field: the pros and cons of the doubly labelled water and heart rate methodsFunctional ecology 18:168–183
- The acute glucocorticoid stress response does not differentiate between rewarding and aversive social stimuli in ratsHormones and behavior 61:218–226
- Immune regulation by corticosteroidsNat Rev Immunol 17:233–247
- Metabolically exaggerated cardiac reactions to acute psychological stress revisitedPsychophysiology 46:270–275
- Minimal changes in environmental temperature result in a significant increase in energy expenditure and changes in the hormonal homeostasis in healthy adultsEuropean journal of endocrinology/European Federation of Endocrine Societies 163
- Stress, metabolism, and antioxidants in two wild passerine bird speciesPhysiological and Biochemical Zoology 81:463–472
- Responses of cortisol and prolactin to sexual excitement and stress in stallions and geldingsJournal of Animal Science 69:2556–2562
- Increased energy expenditure but decreased stress responsiveness during moltPhysiological and Biochemical Zoology 81:452–462
- Feast and famine: critical role of glucocorticoids with insulin in daily energy flowFrontiers in neuroendocrinology 14:303–347
- Roles and mechanistic bases of glucocorticoid regulation of avian reproductionIntegrative and comparative biology 57:1184–1193
- Metabolic scaling of stress hormones in vertebratesIntegrative and comparative biology 58:729–738
- Adrenergic, respiratory, and cardiovascular effects of core cooling in humansAmerican Journal of Physiology-Regulatory, Integrative and Comparative Physiology 272:R557–R562
- The cortisol awakening response (CAR): facts and future directionsInternational journal of Psychophysiology 72:67–73
- Chronic mild stress induces variations in locomotive behavior and metabolic rates in high fat fed ratsJournal of physiology and biochemistry 63:337–346
- Energetics of stress: linking plasma cortisol levels to metabolic rate in mammalsBiology letters 12
- Chronic disruption of body weight but not of stress peptides or receptors in rats exposed to repeated restraint stressHormones and behavior 49:615–625
- Adrenal responsiveness in domestic sheep (Ovis aries) to acute and chronic stressors as predicted by remote monitoring of cardiac frequencyCanadian journal of zoology 65:2021–2027
- Regulation of the Hypothalamic-Pituitary-Adrenocortical Stress ResponseIn Comprehensive Physiology 6:603–621https://doi.org/10.1002/cphy.c150015
- The neuroendocrinology of stress: Glucocorticoid signaling mechanismsPsychoneuroendocrinology
- Paradoxical sleep deprivation and sleep recovery: effects on the hypothalamic–pituitary–adrenal axis activity, energy balance and body composition of ratsJournal of neuroendocrinology 18:231–238
- Multiscale evaluation of thermal dependence in the glucocorticoid response of vertebratesThe American Naturalist 188:342–356
- Corticosterone levels reflect variation in metabolic rate, independent of ‘stress.’Scientific Reports 8https://doi.org/10.1038/s41598-018-31258-z
- Activities in vitro of glucocorticoids and related steroids on glucose uptake by rat thymus cell suspensionsEndocrinology 79:387–390
- Thyroid hormone as a determinant of energy expenditure and the basal metabolic rateThyroid 18:141–144
- Morningness and eveningness: the free cortisol rise after awakening in “early birds” and “night owls”Biological psychology 72:141–146
- Metabolic, body temperature and hormonal responses to repeated periods of prolonged cycle-ergometer exercise in menEuropean journal of applied physiology and occupational physiology 64:26–31
- A randomized cross-over study of the acute effects of running 5 km on glucose, insulin, metabolic rate, cortisol and Troponin TPloS one 12
- Moderate walking enhances the effects of an energy-restricted diet on fat mass loss and serum insulin in overweight and obese adults in a 12-week randomized controlled trialThe Journal of nutrition 147:1875–1884
- Stress revisited: a critical evaluation of the stress conceptNeuroscience & Biobehavioral Reviews 35:1291–1301
- Metabolic functions of glucocorticoid receptor in skeletal muscleMolecular and cellular endocrinology 380:79–88
- Actions of glucocorticoids at a seasonal baseline as compared to stress-related levels in the regulation of periodic life processesGeneral and comparative endocrinology 148:132–149
- Practical meta-analysisSAGE publications, Inc
- Maternal care, hippocampal glucocorticoid receptors, and hypothalamic-pituitary-adrenal responses to stressScience 277:1659–1662https://doi.org/10.1126/science.277.5332.1659
- Glucocorticoids and “Stress” Are Not SynonymousIntegrative Organismal Biology 1https://doi.org/10.1093/IOB/OBZ017
- The need for a predictive, context-dependent approach to the application of stress hormones in conservationConservation Biology 28:283–287
- Assessing baseline stress physiology as an integrator of environmental quality in a wild avian population: Implications for use as a conservation biomarkerBiological Conservation 192:409–417https://doi.org/10.1016/j.biocon.2015.10.021
- Inferring whole-organism metabolic rate from red blood cells in birdsFrontiers in Physiology 12
- Quantifying glucocorticoid plasticity using reaction norm approaches: There still is so much to discover!Integrative and Comparative Biology 62:58–70
- Conservation EndocrinologyBioScience 67:429–442https://doi.org/10.1093/BIOSCI/BIX026
- The concept of allostasis in biology and biomedicineHormones and behavior 43:2–15
- Are the effects of T3 on resting metabolic rate in euthyroid rats entirely caused by T3 itself?Endocrinology 143:504–510
- Effect size, confidence interval and statistical significance: a practical guide for biologistsBiological Reviews 82:591–605https://doi.org/10.1111/J.1469-185X.2007.00027.X
- Behavioral, physiological, and endocrine responses of starlings to acute increases in densityHormones and Behavior 44:222–232
- Heart rate and behavior are regulated independently of corticosterone following diverse acute stressorsGeneral and comparative endocrinology 133:173–180
- New insights into sympathetic regulation of glucose and fat metabolismDiabetologia 43:533–549
- Endocrine phenotype, reproductive success and survival in the great tit, Parus majorJournal of Evolutionary Biology 26:1988–1998
- The anticipatory stress response to sport competition; a systematic review with meta-analysis of cortisol reactivityBMJ open sport & exercise medicine 3
- Natural selection and glucocorticoid physiologyJournal of Evolutionary Biology 27:259–274https://doi.org/10.1111/jeb.12286
- Metabolic and hormonal responses to isoenergetic high-intensity interval exercise and continuous moderate-intensity exerciseAmerican Journal of Physiology-Endocrinology and Metabolism 307:E539–E552
- The glucocorticoid response to environmental change is not specific to agents of natural selection in wild red squirrelsHormones and Behavior 146
- R: A language and environment for statistical computingVienna, Austria: R Foundation for Statistical Computing https://www.R-project.org/
- Physiological stress in ecology: lessons from biomedical researchTrends in ecology & evolution 19:249–255
- The reactive scope model—a new model integrating homeostasis, allostasis, and stressHormones and behavior 55:375–389
- Common myths of glucocorticoid function in ecology and conservationJournal of Experimental Zoology Part A: Ecological and Integrative Physiology https://doi.org/10.1002/JEZ.2459
- Measuring corticosterone in feathers: strengths, limitations, and suggestions for the futureComparative Biochemistry and Physiology Part A: Molecular & Integrative Physiology 202:112–122
- The hypothalamic–pituitary–adrenal axis activity as a predictor of cardiovascular disease, type 2 diabetes and strokeJournal of internal medicine 247:188–197
- Body temperature and activity patterns modulate glucocorticoid levels across lizard species. A macrophysiological approachFrontiers in Ecology and Evolution, in press
- Biophysical models unravel associations between glucocorticoids and thermoregulatory costs across avian speciesFunctional Ecology 36:64–72
- Effects of physiological hypercortisolemia on the regulation of lipolysis in subcutaneous adipose tissueThe Journal of Clinical Endocrinology & Metabolism 83:626–631
- How do glucocorticoids influence stress responses? Integrating permissive, suppressive, stimulatory, and preparative actionsEndocrine reviews 21:55–89
- Influence of mental stress on cardiovascular function as evaluated by changes in energy expenditureHypertension Research 30:1019–1027
- Simple means to improve the interpretability of regression coefficientsMethods in Ecology and Evolution 1:103–113https://doi.org/10.1111/J.2041-210X.2010.00012.X
- Does variation in glucocorticoid concentrations predict fitness? A phylogenetic meta-analysisGeneral and Comparative Endocrinology 300https://doi.org/10.1016/j.ygcen.2020.113611
- Stress and the general adaptation syndromeBritish medical journal 1
- Stress without distressIn Psychopathology of human adaptation Boston, MA: Springer :137–146
- The Effect of Sexual Activity on Secretory Immunoglobulin a and Cortisol Levels in Married CouplesDissertation University of Tennessee Knoxville
- Hormonal regulation of hormone-sensitive lipase activity and mRNA levels in isolated rat adipocytesJournal of lipid research 35:1535–1541
- Glucocorticoids inhibit the transcriptional response of the uncoupling protein-1 gene to adrenergic stimulation in a brown adipose cell lineMolecular and cellular endocrinology 165:7–15
- Human physiological responses to immersion into water of different temperaturesEuropean journal of applied physiology 81:436–442
- Individual variation in natural or manipulated corticosterone does not covary with circulating glucose in a wild birdJournal of Experimental Biology 225
- The repeatability of glucocorticoids: a review and meta-analysisGeneral and Comparative Endocrinology 260:136–145
- Glucocorticoids, metabolism and metabolic diseasesMolecular and cellular endocrinology 275:43–61
- Repeatability and individual correlates of basal metabolic rate and total evaporative water loss in birds: a case study in European stonechatsComparative Biochemistry and Physiology Part A: Molecular & Integrative Physiology 150:452–457
- Conducting Meta-Analyses in R with the metafor PackageJournal of Statistical Software 36:1–48https://doi.org/10.18637/JSS.V036.I03
- Epigenetic programming by maternal behaviorNat. Neurosci 7:847–854
- Energy metabolism, testosterone and corticosterone in white-crowned sparrowsJournal of Comparative Physiology A 185:463–470
- Allostatic Load in Gambel’s White Crowned Sparrow, Zonotrichia leucophrys gambelii: Relationships With GlucocorticoidsFrontiers in Ecology and Evolution 10
- The effect of aggression I: the increases of metabolic cost and mobilization of fat reserves in male striped hamstersHormones and Behavior 98:55–62
- Influences of maternal and paternal PTSD on epigenetic regulation of the glucocorticoid receptor gene in holocaust survivor offspringAmerican Journal of Psychiatry 171:872–880
- On again, off again: acute stress response and negative feedback together predict resilience to experimental challengesFunctional Ecology 33:619–628
- Environmental unpredictability shapes glucocorticoid regulation across populations of tree swallowsScientific reports 10:1–13
- Information theory in vertebrate stress physiologyTrends in Endocrinology & Metabolism 33:8–17
Article and author information
Author information
Version history
- Sent for peer review:
- Preprint posted:
- Reviewed Preprint version 1:
- Reviewed Preprint version 2:
- Version of Record published:
Copyright
© 2023, Blanca Jimeno & Simon Verhulst
This article is distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use and redistribution provided that the original author and source are credited.
Metrics
- views
- 1,682
- downloads
- 158
- citations
- 14
Views, downloads and citations are aggregated across all versions of this paper published by eLife.