Moving equilibrium hypothesis for motor control and real-time learning of cortical activity.
(a) A voluntary movement trajectory can be specified by the target length of the muscles in time, , encoded through the γ-innervation of muscle spindles, and the deviation of the effective muscle lengths from the target, . The Ia-afferents emerging from the spindles prospectively encode the error, so that their low-pass filtering is roughly proportional to the length deviation, truncated at zero (red). The moving equilibrium hypothesis states that the low-pass filtered input , composed of the movement plan and the sensory input (here encoding the state of the plant e.g. through visual and proprioceptive input, and ), together with the low-pass filtered error feedback from the spindles, , instantaneously generate the muscle lengths, , and are thus at any point in time in an instantaneous equilibrium (defined by Eq. 7). (b1) Intracortical iEEG activity recorded from 56 deep electrodes and projected to the brain surface. Red nodes symbolize the 56 iEEG recording sites modeled alternately as input or output neurons, and blue nodes symbolize the 40 ‘hidden’ neurons for which no data is available, but used to reproduce the iEEG activity. (b2) Corresponding NLA network. During training, the voltages of the output neurons were nudged by the iEEG targets (black input arrows, but for all red output neurons). During testing, nudging was removed for 14 out of these 56 neurons (here, represented by neurons 1, 2, 3). (c1) Voltage traces for the 3 example neurons in a2, before (blue) and after (red) training, overlaid with their iEEG target traces (grey). (c2) Total cost, integrated over a window of 8 s of the 56 output nodes during training with sequences of the same duration. The cost for the test sequences was evaluated on a 8 s window not used during training.