Idiosyncratic calcium dynamics predict individual odor preferences
(A) Olfactory circuit schematic. Olfactory receptor neurons (ORNs, peach outline) and projection neurons (PNs, plum outline) are comprised of ∼51 classes corresponding to odor receptor response channels. ORNs (gray shading) sense odors in the antennae and synapse on dendrites of PNs of the same class in ball-shaped structures called glomeruli located in the antennal lobe (AL). Local neurons (LNs, green outline) mediate interglomerular cross-talk and presynaptic inhibition, amongst other roles (Olsen and Wilson, 2008; Yaksi and Wilson, 2010). Odor signals are normalized and whitened in the AL before being sent to the mushroom body and lateral horn for further processing. Schematic adapted from Honegger et al., 2019 (B) Experiment outline. (C) Odor preference behavior tracking setup (reproduced from Honegger, Smith, et al. (Honegger et al., 2019)) and example individual fly ethograms. OCT (green) and MCH (magenta) were presented for 3 minutes. (D) Head-fixed 2-photon calcium imaging and odor delivery setup (reproduced from Honegger et al., 2019) (E) Orco and GH146 driver expression profiles (left) and example segmentation masks (right) extracted from 2-photon calcium images for a single fly expressing Orco>GCaMP6m (top, expressed in a subset of all ORN classes) or GH146>Gcamp6m (bottom, expressed in a subset of all PN classes). (F) Time-dependent Δf/f for glomerular odor responses in ORNs (peach) and PNs (plum) averaged across all individuals: DC2 to OCT (upper left), DM2 to OCT (upper right), DC2 to MCH (lower left), and DM2 to OCT (lower right). Shaded error bars represent S.E.M. (G) Peak Δf/f for each glomerulus-odor pair averaged across all flies. (H) Individual neural responses measured in ORNs (left) or PNs (right) for 50 flies each. Columns represent the average of up to 4 odor responses from a single fly. Each row represents one glomerulus-odor response pair. Odors are the same as in panel (G). (I) Principal component analysis of individual neural responses. Fraction of variance explained versus principal component number (left). Trial 1 and trial 2 of ORN (middle) and PN (right) responses for 20 individuals (unique colors) embedded in PC 1-2 space. (J) Euclidean distances between glomerulus-odor responses within and across flies measured in ORNs (n=65 flies) and PNs (n=122 flies). Distances calculated without PCA compression. Points represent the median value, boxes represent the interquartile range, and whiskers the range of the data. (K) Bootstrapped R2 of OCT-AIR preference prediction from each of the first 5 principal components of neural activity measured in ORNs (top, all data) or PNs (bottom, training set). (L) Measured OCT-AIR preference versus preference predicted from PC 1 of ORN activity (n=30 flies). (M) Measured OCT-AIR preference versus preference predicted from PC 1 of PN activity in n=53 flies using a model trained on a training set of n=18 flies (see Figure 2 – figure supplement 1A-B for train/test flies analyzed separately). (N) Bootstrapped R2 of OCT-MCH preference prediction from each of the first 5 principal components of neural activity measured in ORNs (top, all data) or PNs (bottom, training set). (O) Measured OCT-MCH preference versus preference predicted from PC 1 of ORN activity (n=35 flies). (P) Measured OCT-MCH preference versus preference predicted from PC 2 of PN activity in n=69 flies using a model trained on a training set of n=47 flies (see Figure 2 – figure supplement 1C-D for train/test flies analyzed separately). Shaded regions in L,M,O,P are the 95% CI of the fit estimated by bootstrapping.