The multi-attribute decision making task (Chau et al., 2014; Gluth et al., 2018). (a) On the control Two-Option Trials, participants were presented two options associated with different levels of reward magnitude and probability, each in the form of a rectangular bar surrounded by an orange box. On the experimental Distractor Trials, three options were presented. Two options were subsequently surrounded by orange boxes indicating that they could be chosen, while a third option was surrounded by a purple box indicating that it was an unchooseable distractor. (b) The association between stimulus colour and orientation to reward magnitude and probability, respectively. Participants were instructed to learn these associations prior to task performance. (c) Plots illustrating utility estimated using (left) a purely multiplicative rule and (right) a purely additive rule (here assuming equal weights for probability and magnitude). By comparing their corresponding plots, differences in the utility contours are most apparent in the bottom-left and top-right corners. This is because in the multiplicative rule a small value in either the magnitude or probability produces a small overall utility (blue colours). In contrast, in the additive rule the two attributes are independent – a small value in one attribute and a large value in another attribute can produce a moderate overall utility (green colours). (Middle) Here, we included a composite model that combines both rules. The composite model involves an integration coefficient 𝜂 that controls the relative contributions of the multiplicative and additive rules.
Figure 1a and b are reproduced from (Chau et al., 2014), Nature Neuroscience.