Author response:
The following is the authors’ response to the original reviews.
eLife assessment
This useful manuscript reports mechanisms behind the increase in fecundity in response to sub-lethal doses of pesticides in the crop pest, the brown plant hopper. The authors hypothesize that the pesticide works by inducing the JH titer, which through the JH signaling pathway induces egg development. Evidence for this is, however, inadequate.
We greatly appreciate your valuable comments and constructive suggestions for our work. All in all, the manuscript has been carefully edited and improved following your suggestions. We also provide more evidence to support our statements by conducting new experiments. First, we found that also EB treatment of adult females can stimulate egg-laying. Second, EB treatment in female adults increases the number of mature eggs in the ovary and ovarioles. Third, EB treatment in females enhances the expression of the kr-h1 gene in the whole body of BPH. Finally, EB treatment in female adults increases the JHIII titer, but has no impact on the 20E titer.
Public Reviews:
Reviewer #1 (Public Review):
Summary:
Gao et al. have demonstrated that the pesticide emamectin benzoate (EB) treatment of brown planthopper (BPH) leads to increased egg-laying in the insect, which is a common agricultural pest. The authors hypothesize that EB upregulates JH titer resulting in increased fecundity.
Strengths:
The finding that a class of pesticide increases the fecundity of brown planthopper is interesting.
We greatly appreciate your positive comments on our work.
Weaknesses:
(1) EB is an allosteric modulator of GluCl. That means EB physically interacts with GluCl initiating a structural change in the cannel protein. Yet the authors' central hypothesis here is about how EB can upregulate the mRNA of GluCl. I do not know whether there is any evidence that an allosteric modulator can function as a transcriptional activator for the same receptor protein. The basic premise of the paper sounds counterintuitive. This is a structural problem and should be addressed by the authors by giving sufficient evidence about such demonstrated mechanisms before.
Thank you for your question. As the reviewer points out, EB physically interacts with its target protein GluCl and thus affects its downstream signaling pathway. In the manuscript, we reported that EB-treated brown planthoppers display increased expression of GluCl in the adult stage (Fig. 5A). Actually, there are many studies showing that insects treated with insecticides can increase the expression of target genes. For example, the relative expression level of the ryanodine receptor gene of the rice stem borer, Chilo suppressalis was increased 10-fold after treatment with chlorantraniliprole, an insecticide which targets the ryanodine receptor (Peng et al., 2017). Besides this, in Drosophila, starvation (and low insulin) elevates the transcription level of the sNPF and tachykinin receptors (Ko et al., 2015; Root et al., 2011). In brown planthoppers, reduction in mRNA and protein expression of a nicotinic acetylcholine receptor α8 subunit is associated with resistance to imidacloprid (Zhang et al., 2015). RNA interference knockdown of α8 gene decreased the sensitivity of N. lugens to imidacloprid (Zhang et al., 2015). Hence, expression of receptor genes can be regulated by diverse factors including insecticide treatment. In our case, we found that EB can upregulate its target gene GluCl. However, we did not claim that EB functions as transcriptional activator for GluCl, and we still do not know why EB treatment changes the expression of GluCl in the brown planthopper. Considering our experiments are lasting several days, it might be an indirect (or secondary) effect caused by other factors, which change the expression of GluCl gene upon EB action of the channel. One reason is maybe that the allosteric interaction with GluCl by EB makes it dysfunctional and the cellular response is to upregulate the channel/receptor to compensate. We have inserted text on lines 738 - 757 to explain these possibilities.
(2) I am surprised to see a 4th instar larval application or treatment with EB results in the upregulation of JH in the adult stages. Complicating the results further is the observation that a 4th instar EB application results in an immediate decrease in JH titer. There is a high possibility that this late JH titer increase is an indirect effect.
Thank you for your question. Treatment with low doses or sublethal doses of insecticides might have a strong and complex impact on insects (Gandara et al., 2024; Gong et al., 2022; Li et al., 2023; Martelli et al., 2022). We kept the 4th instar of brown planthoppers feeding on EB for four days. They will develop to 5th instar after four days treatment, which is the final nymphal stage of BPH. Since the brown planthopper is a hemimetabolous insect, we cannot rule out the possibility that an indirect effect of treatment with EB results in the upregulation of JH in the adult stages. In this new revised manuscript, we investigated the impact of EB treatment in the adult stage. We found that female adults treated with EB also laid more eggs than controls (Figure 1-figure supplement 1A). The following experiments were performed in adults to address how EB treated stimulates egg-laying in adult brown planthopper.
(1) We found that EB treatment in adults increases the number of mature eggs in ovary (new Figure 2-figure supplement 1). We add this results in lines 234 – 238 and 281-285.
(2) We measured the JH titer after the female adults had been treated with EB. We found that EB can also increase the JH titer but has no impact on the 20E titer in the female adult (Figure 3-S3A and B). We add this results in lines 351 – 356 and 281-285.
(3) EB treatment in adults increases the gene expression of JHAMT and Kr-h1 (Figure 3-S3C and D). We add this results in lines 378 – 379, lines 387-390 and lines 457-462.
(3) The writing quality of the paper needs improvement. Particularly with respect to describing processes and abbreviations. In several instances the authors have not adequately described the processes they have introduced, thus confusing readers.
Thank you for your suggestion. We have thoroughly revised the paper to improve clarity.
(4) In the section 'EB promotes ovarian development' the authors have shown that EB treatment results in increased detention of eggs which contradicts their own results which show that EB promotes egg laying. Again, this is a serious contradiction that nullifies their hypothesis.
Thank you for pointing this out. We revised the figure 2B to show number of mature eggs in the ovary. The number of mature eggs in ovaries of females that fed on EB was higher than in control females. We also show that BPH fed with EB laid more eggs than controls. Thus, our results suggest that EB promotes ovary maturation (and egg production) and also increases egg laying (Figure 1 and Table S1). Thus, we found that EB treatment can increase both the production of eggs and increase egg laying. We add this results in lines 234 – 238.
(5) Furthermore, the results suggest that oogenesis is not affected by EB application. The authors should devote a section to discussing how they are observing increased egg numbers in EB-treated insects while not impacting Oogenesis.
Thank you for your suggestions, and apologies for the lack of clarity in our initial explanation. First, we found that EB treatment led to an increase in the number of eggs laid by female brown planthoppers (Figure 1). Through dissection experiments, we observed that EB-treated females had more mature eggs in their ovaries (Figure 2A and B), indicating that the increased egg-laying was due to a larger production of mature eggs in the ovaries after EB treatment. This is now explained on lines 229-238.
Additionally, since there is no systematic description of oogenesis in the brown planthopper, we were the first to observe the oogenesis process in this species using immunohistochemistry and laser confocal microscopy. Based on the developmental characteristics, we defined the different stages of oogenesis (Figure 2C, Figure 2-figure supplement 2). We did not observe any significant effect of EB treatment on the various stages of oogenesis, indicating that EB treatment does not impair normal egg development (Figure 2D). Instead, the increase in vitellogenin accelerates the production of mature eggs. This is now explained on lines 243-262.
During the maturation process, eggs require uptake of vitellogenin, and an increase in vitellogenin (Vg) content can accelerate egg maturation, producing more mature eggs. Our molecular data suggest that EB treatment leads to an upregulation of vg expression. Based on these findings, we conclude that the increase in egg-laying caused by EB treatment is due to the upregulation of vg (Figure 3I), which raises vitellogenin content, promoting the uptake of vitellogenin by maturing eggs and resulting in the production of more mature eggs. We have revised the text on lines 389-395 to clarify this point.
(6) Met is the receptor of JH and to my understanding, remains mostly constant in terms of its mRNA or protein levels throughout various developmental periods in many different insects. Therefore, the presence of JH becomes the major driving factor for physiological events and not the presence of the receptor Met. Here the authors have demonstrated an increase in Met mRNA as a result of EB treatment. Their central hypothesis is that EB increases JH titer to result in enhanced fecundity. JH action will not result in the activation of Met. Although not contradictory to the hypothesis, the increase in mRNA content of Met is contrary to the findings of the JH field thus far.
Thank you for your comment. Our results showed that EB treatment can mildly increase (about 2-fold) expression of the Met gene in brown planthoppers (Figure 3G). And our data indicated that Met and FAMeT expression levels were not influenced so much by EB compared with kr-h1 and vg (Figure 3H and I). We agree that JH action will not result in the increase of Met. However, we cannot rule out the possibility of other factors (indirect effects), induced by EB treatment that increase the mRNA expression level of Met. One recent paper reported that downregulation of transcription factor CncC will increase met expression in beetles (see Figure 6A in this reference) (Jiang et al., 2023). Many studies have reported that insecticide treatment will activate the CncC gene signaling pathway, which regulates detoxification gene expression (Amezian et al., 2023; Fu et al., 2024; Hu et al., 2021). Hence, it is possible that EB might influence the CncC gene pathway which then induces met expression. This EB effect on met upregulation may be similar to the upregulation of GluCl and some other secondary effects. We have discussed this on lines 725-738.
(7) As pointed out before, it is hard to rationalize how a 4th instar exposure to EB can result in the upregulation of key genes involved in JH synthesis at the adult stage. The authors must consider providing a plausible explanation and discussion in this regard.
Thank you for your comments. It must be mentioned that although we exposed the BPH to EB at 4th instar, we make the insect feed on the EB-treated rice plants for four days. After that, the insect will develop into 5th instar, the final nymphal stage of brown planthopper. Since brown planthoppers do not have a pupal stage, this might cause the EB presented to the insects last a longer time even in the adult stage. Besides this, we found that EB treatment will increase the weight of adult females (Figure 1-figure supplement 3E and F), which indicates that EB might increase food intake in BPHs that might produce more insulin peptide. Insulin might increase the JH synthesis at the adult stage. In our revised study we also investigate EB impairment in adult BPHs. We found that, similar to the nymphal stage, EB treatment in adult BPHs also increases the egg laying. Furthermore, the JH titer was increased after treatment of BPH with EB in adults. Besides this, GluCl and kr-h1 genes were also up-regulated after EB treatment in the adult stage. We have discussed this on lines 739-746.
(8) I have strong reservations against such an irrational hypothesis that Met (the receptor for JH) and JH-Met target gene Kr-h1 regulate JH titer (Line 311, Fig 3 supplemental 2D). This would be the first report of such an event on the JH field and therefore must be analysed in depth. I strongly suggest the authors remove such claims from the manuscript without substantiating it.
Thank you for your suggestions and comments. We have changed our claims in this revised MS. We found that EB treatment can enhance Kr-h1 expression. We have no evidence to support that JH can induce met expression. We have rewritten the manuscript to avoid confusion (see text on lines 725-735).
(9) Kr-h1 is JH/Met target gene. The authors demonstrate that silencing of Kr-h1 results in inhibition of FAMeT, which is a gene involved in JH synthesis. A feedback loop in JH synthesis is unreported. It is the view of this reviewer that the authors must go ahead with a mechanistic detail of Kr-h1 mediated JH upregulation before this can be concluded. Mere qPCR experiments are not sufficient to substantiate a claim that is completely contrary to the current understanding of the JH signalling pathway.
Thank you for your suggestions and comments. We agree that only qPCR experiments are not enough to provide this kind of claim. More evidences need to be provided to support this. We have revised the MS to avoid confusion (see text on lines 725-735).
(10) The authors have performed knockdowns of JHAMT, Met, and Kr-h1 to demonstrate the effect of these factors on fecundity in BPH. Additionally, they have performed rescue experiments with EB application on these knockdown insects (Figure 3K-M). This, I believe, is a very flawed experiment. The authors demonstrate EB works through JHAMT in upregulating JH titer. In the absence of JHAMT, EB application is not expected to rescue the phenotype. But the authors have reported a complete rescue here. In the absence of Met, the receptor of JH, either EB or JH is not expected to rescue the phenotype. But a complete rescue has been reported. These two experimental results contradict their own hypothesis.
Thank you for your comments. We thought that this rescue is possible since knockdown of the genes is incomplete when using dsRNA injection (and residual gene expression allows for EB action). It is not a total knockout and actually, these genes still have a low level of expression in the dsRNA-injected insects. Since EB can upregulate the expression of JHAMT, Met, and Kr-h1, it is reasonable that EB treatment can rescue the down-regulation effects of these three genes and make fecundity completely rescued. We have clarified this on lines 411-413).
(11) A significant section of the paper deals with how EB upregulates JH titer. JH is a hormone synthesized in the Corpora Allata. Yet the authors have chosen to use the whole body for all of their experiment. Changes in the whole body for mRNA of those enzymes involved in JH synthesis may not reflect the situation in Corpora Allata. Although working with Corpora Allata is challenging, discarding the abdomen and thorax region and working with the head and neck region of the insect is easily doable. Results from such sampling are always more convincing when it comes to JH synthesis studies.
Thank you for your suggestions. Because the head is very difficult to separate from the thorax region in brown planthoppers as you can see in Author response image 1. We are now trying to answer how EB regulates JH synthesis using Drosophila as a model.
Author response image 1.
The brown planthopper

(12) The phenomenon reported was specific to BPH and not found in other insects. This limits the implications of the study.
Thank you for your comments. The brown planthopper is a serious insect pest on rice in Asia. Our findings can guide the use of this insecticide in the field. Besides this, our findings indicated that EB, which targets GluCl can impair the JH titer. Our findings added new implications for how a neuronal system influences the JH signaling pathway. We will further investigate how EB influences JH in the future and will use Drosophila as a model to study the molecular mechanisms.
(13) Overall, the molecular experiments are very poorly designed and can at best be termed superficial. There are several contradictions within the paper and no discussion or explanation has been provided for that.
Thank you for your comments. We have revised the paper according to your suggestions and added further explanation of our results in the discussion parts and hope the conclusions are better supported in the new version. We have discussed this on lines 725-746 and 778-799.
Reviewer #2 (Public Review):
The brown plant hopper (BPH) is a notorious crop pest and pesticides are the most widespread means of controlling its population. This manuscript shows that in response to sublethal doses of the pesticide (EB), BPH females show enhanced fecundity. This is in keeping with field reports of population resurgence post-pesticide treatment. The authors work out the mechanism behind this increase in fecundity. They show that in response to EB exposure, the expression of its target receptor, GluCl, increases. This, they show, results in an increase in the expression of genes that regulate the synthesis of juvenile hormone (JH) and JH itself, which, in turn, results in enhanced egg-production and egg-laying. Interestingly, these effects of EB exposure are species-specific, as the authors report that other species of plant hoppers either don't show enhanced fecundity or show reduced fecundity. As the authors point out, it is unclear how an increase in GluCl levels could result in increased JH regulatory genes.
We greatly appreciate your valuable comments and constructive suggestion to our work. We will try to figure out how EB interacts with its molecular target GluCl and then increases JH regulatory genes in the future work using Drosophila as models.
Recommendations for the authors:
Reviewer #1 (Recommendations For The Authors):
Overall, the molecular experiments are very poorly designed and can at best be termed superficial. There are several contradictions within the paper and no discussion or explanation has been provided for that.
The authors should consider a thorough revision.
Thank you for your comments. We have thoroughly revised the paper according to your suggestions and added further experiments and explanations of our results in the discussion parts.
Reviewer #2 (Recommendations For The Authors):
It would help the reader to have more schematics along with the figures. The final figure is helpful, but knowing the JH pathway, and where it acts would help with the interpretations as one reads the manuscript and the figures. The pathways represented in 4N or 5J are helpful but could be improved upon for better presentation.
It would be nice to have some discussion on how the authors think EB exposure results in an increase in GluCl expression, and how that in turn affects the expression of so many genes.
Thank you for your comments. We have thoroughly revised the paper according to your suggestions and added further experiments and explanations of how we think EB exposure results in an increase in JH titer and other genes in the discussion parts. We have added the test on lines 753-761.
References
Amezian, D., Fricaux, T., de Sousa, G., Maiwald, F., Huditz, H.-I., Nauen, R., Le Goff, G., 2023. Investigating the role of the ROS/CncC signaling pathway in the response to xenobiotics in Spodoptera frugiperda using Sf9 cells. Pesticide Biochemistry and Physiology 195, 105563.
Fu, B., Liang, J., Hu, J., Du, T., Tan, Q., He, C., Wei, X., Gong, P., Yang, J., Liu, S., Huang, M., Gui, L., Liu, K., Zhou, X., Nauen, R., Bass, C., Yang, X., Zhang, Y., 2024. GPCR–MAPK signaling pathways underpin fitness trade-offs in whitefly. Proceedings of the National Academy of Sciences 121, e2402407121.
Gandara, L., Jacoby, R., Laurent, F., Spatuzzi, M., Vlachopoulos, N., Borst, N.O., Ekmen, G., Potel, C.M., Garrido-Rodriguez, M., Böhmert, A.L., Misunou, N., Bartmanski, B.J., Li, X.C., Kutra, D., Hériché, J.-K., Tischer, C., Zimmermann-Kogadeeva, M., Ingham, V.A., Savitski, M.M., Masson, J.-B., Zimmermann, M., Crocker, J., 2024. Pervasive sublethal effects of agrochemicals on insects at environmentally relevant concentrations. Science 386, 446-453.
Gong, Y., Cheng, S., Desneux, N., Gao, X., Xiu, X., Wang, F., Hou, M., 2022. Transgenerational hormesis effects of nitenpyram on fitness and insecticide tolerance/resistance of Nilaparvata lugens. Journal of Pest Science.
Hu, B., Huang, H., Hu, S., Ren, M., Wei, Q., Tian, X., Esmail Abdalla Elzaki, M., Bass, C., Su, J., Reddy Palli, S., 2021. Changes in both trans- and cis-regulatory elements mediate insecticide resistance in a lepidopteron pest, Spodoptera exigua. PLOS Genetics 17, e1009403.
Jiang, H., Meng, X., Zhang, N., Ge, H., Wei, J., Qian, K., Zheng, Y., Park, Y., Reddy Palli, S., Wang, J., 2023. The pleiotropic AMPK–CncC signaling pathway regulates the trade-off between detoxification and reproduction. Proceedings of the National Academy of Sciences 120, e2214038120.
Ko, K.I., Root, C.M., Lindsay, S.A., Zaninovich, O.A., Shepherd, A.K., Wasserman, S.A., Kim, S.M., Wang, J.W., 2015. Starvation promotes concerted modulation of appetitive olfactory behavior via parallel neuromodulatory circuits. eLife 4, e08298.
Li, Z., Wang, Y., Qin, Q., Chen, L., Dang, X., Ma, Z., Zhou, Z., 2023. Imidacloprid disrupts larval molting regulation and nutrient energy metabolism, causing developmental delay in honey bee Apis mellifera. eLife
Martelli, F., Hernandes, N.H., Zuo, Z., Wang, J., Wong, C.-O., Karagas, N.E., Roessner, U., Rupasinghe, T., Robin, C., Venkatachalam, K., Perry, T., Batterham, P., Bellen, H.J., 2022. Low doses of the organic insecticide spinosad trigger lysosomal defects, elevated ROS, lipid dysregulation, and neurodegeneration in flies. eLife 11, e73812.
Peng, Y.C., Sheng, C.W., Casida, J.E., Zhao, C.Q., Han, Z.J., 2017. Ryanodine receptor genes of the rice stem borer, Chilo suppressalis: Molecular cloning, alternative splicing and expression profiling. Pestic. Biochem. Physiol. 135, 69-77.
Root, Cory M., Ko, Kang I., Jafari, A., Wang, Jing W., 2011. Presynaptic facilitation by neuropeptide signaling mediates odor-driven food search. Cell 145, 133-144.
Zhang, Y., Wang, X., Yang, B., Hu, Y., Huang, L., Bass, C., Liu, Z., 2015. Reduction in mRNA and protein expression of a nicotinic acetylcholine receptor α8 subunit is associated with resistance to imidacloprid in the brown planthopper, Nilaparvata lugens. Journal of Neurochemistry 135, 686-694.