T cell-intrinsic role of IL-6 signaling in primary and memory responses

  1. Simone A Nish
  2. Dominik Schenten
  3. Thomas Wunderlich
  4. Scott D Pope
  5. Yan Gao
  6. Namiko Hoshi
  7. Shuang Yu
  8. Xiting Yan
  9. Heung Kyu Lee
  10. Lesley Pasman
  11. Igor Brodsky
  12. Brian Yordy
  13. Hongyu Zhao
  14. Jens Brüning
  15. Ruslan Medzhitov  Is a corresponding author
  1. Yale University School of Medicine, United States
  2. Max Planck Institute for Neurological Research Cologne, Germany
  3. Yale School of Public Health, United States

Abstract

Innate immune recognition is critical for the induction of adaptive immune responses; however the underlying mechanisms remain incompletely understood. Here, we demonstrate that T cell-specific deletion of the IL-6 receptor α chain (IL-6Rα) results in impaired Th1 and Th17 T cell responses in vivo, and a defect in the Tfh function. Depletion of Tregs in these mice rescued the Th1 but not the Th17 response. Our data suggest that IL-6 signaling in effector T cells is required to overcome Treg-mediated suppression in vivo. We show that IL-6 cooperates with IL-1β to block the suppressive effect of Tregs on CD4+ T cells, at least in part by controlling their responsiveness to IL-2. In addition, although IL-6Rα-deficient T cells mount normal primary Th1 responses in the absence of Tregs, they fail to mature into functional memory cells, demonstrating a key role for IL-6 in CD4+ T cell memory formation.

Article and author information

Author details

  1. Simone A Nish

    Yale University School of Medicine, New Haven, United States
    Competing interests
    No competing interests declared.
  2. Dominik Schenten

    Yale University School of Medicine, New Haven, United States
    Competing interests
    No competing interests declared.
  3. Thomas Wunderlich

    Max Planck Institute for Neurological Research Cologne, Cologne, Germany
    Competing interests
    No competing interests declared.
  4. Scott D Pope

    Yale University School of Medicine, New Haven, United States
    Competing interests
    No competing interests declared.
  5. Yan Gao

    Yale University School of Medicine, New Haven, United States
    Competing interests
    No competing interests declared.
  6. Namiko Hoshi

    Yale University School of Medicine, New Haven, United States
    Competing interests
    No competing interests declared.
  7. Shuang Yu

    Yale University School of Medicine, New Haven, United States
    Competing interests
    No competing interests declared.
  8. Xiting Yan

    Yale School of Public Health, New Haven, United States
    Competing interests
    No competing interests declared.
  9. Heung Kyu Lee

    Yale University School of Medicine, New Haven, United States
    Competing interests
    No competing interests declared.
  10. Lesley Pasman

    Yale University School of Medicine, New Haven, United States
    Competing interests
    No competing interests declared.
  11. Igor Brodsky

    Yale University School of Medicine, New Haven, United States
    Competing interests
    No competing interests declared.
  12. Brian Yordy

    Yale University School of Medicine, New Haven, United States
    Competing interests
    No competing interests declared.
  13. Hongyu Zhao

    Yale School of Public Health, New Haven, United States
    Competing interests
    No competing interests declared.
  14. Jens Brüning

    Max Planck Institute for Neurological Research Cologne, Cologne, Germany
    Competing interests
    No competing interests declared.
  15. Ruslan Medzhitov

    Yale University School of Medicine, New Haven, United States
    For correspondence
    ruslan.medzhitov@yale.edu
    Competing interests
    Ruslan Medzhitov, Reviewing editor, eLife.

Ethics

Animal experimentation: This study was performed in accordance with the recommendations in the Guide for the Care and Use of Laboratory Animals of the National Institutes of Health. All of the animals were handled according to approved institutional animal care and use committee (IACUC) protocols (#2011-08006) of the Yale University.

Copyright

© 2014, Nish et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Simone A Nish
  2. Dominik Schenten
  3. Thomas Wunderlich
  4. Scott D Pope
  5. Yan Gao
  6. Namiko Hoshi
  7. Shuang Yu
  8. Xiting Yan
  9. Heung Kyu Lee
  10. Lesley Pasman
  11. Igor Brodsky
  12. Brian Yordy
  13. Hongyu Zhao
  14. Jens Brüning
  15. Ruslan Medzhitov
(2014)
T cell-intrinsic role of IL-6 signaling in primary and memory responses
eLife 3:e01949.
https://doi.org/10.7554/eLife.01949

Share this article

https://doi.org/10.7554/eLife.01949

Further reading

    1. Immunology and Inflammation
    Zhiyan Wang, Nore Ojogun ... Mingfang Lu
    Research Article

    The incidence of metabolic dysfunction-associated steatotic liver disease (MASLD) has been increasing worldwide. Since gut-derived bacterial lipopolysaccharides (LPS) can travel via the portal vein to the liver and play an important role in producing hepatic pathology, it seemed possible that (1) LPS stimulates hepatic cells to accumulate lipid, and (2) inactivating LPS can be preventive. Acyloxyacyl hydrolase (AOAH), the eukaryotic lipase that inactivates LPS and oxidized phospholipids, is produced in the intestine, liver, and other organs. We fed mice either normal chow or a high-fat diet for 28 weeks and found that Aoah-/- mice accumulated more hepatic lipid than did Aoah+/+ mice. In young mice, before increased hepatic fat accumulation was observed, Aoah-/- mouse livers increased their abundance of sterol regulatory element-binding protein 1, and the expression of its target genes that promote fatty acid synthesis. Aoah-/- mice also increased hepatic expression of Cd36 and Fabp3, which mediate fatty acid uptake, and decreased expression of fatty acid-oxidation-related genes Acot2 and Ppara. Our results provide evidence that increasing AOAH abundance in the gut, bloodstream, and/or liver may be an effective strategy for preventing or treating MASLD.

    1. Immunology and Inflammation
    2. Microbiology and Infectious Disease
    Malika Hale, Kennidy K Takehara ... Marion Pepper
    Research Article

    Pseudomonas aeruginosa (PA) is an opportunistic, frequently multidrug-resistant pathogen that can cause severe infections in hospitalized patients. Antibodies against the PA virulence factor, PcrV, protect from death and disease in a variety of animal models. However, clinical trials of PcrV-binding antibody-based products have thus far failed to demonstrate benefit. Prior candidates were derivations of antibodies identified using protein-immunized animal systems and required extensive engineering to optimize binding and/or reduce immunogenicity. Of note, PA infections are common in people with cystic fibrosis (pwCF), who are generally believed to mount normal adaptive immune responses. Here, we utilized a tetramer reagent to detect and isolate PcrV-specific B cells in pwCF and, via single-cell sorting and paired-chain sequencing, identified the B cell receptor (BCR) variable region sequences that confer PcrV-specificity. We derived multiple high affinity anti-PcrV monoclonal antibodies (mAbs) from PcrV-specific B cells across three donors, including mAbs that exhibit potent anti-PA activity in a murine pneumonia model. This robust strategy for mAb discovery expands what is known about PA-specific B cells in pwCF and yields novel mAbs with potential for future clinical use.