T cell-intrinsic role of IL-6 signaling in primary and memory responses

  1. Simone A Nish
  2. Dominik Schenten
  3. Thomas Wunderlich
  4. Scott D Pope
  5. Yan Gao
  6. Namiko Hoshi
  7. Shuang Yu
  8. Xiting Yan
  9. Heung Kyu Lee
  10. Lesley Pasman
  11. Igor Brodsky
  12. Brian Yordy
  13. Hongyu Zhao
  14. Jens Brüning
  15. Ruslan Medzhitov  Is a corresponding author
  1. Yale University School of Medicine, United States
  2. Max Planck Institute for Neurological Research Cologne, Germany
  3. Yale School of Public Health, United States

Abstract

Innate immune recognition is critical for the induction of adaptive immune responses; however the underlying mechanisms remain incompletely understood. Here, we demonstrate that T cell-specific deletion of the IL-6 receptor α chain (IL-6Rα) results in impaired Th1 and Th17 T cell responses in vivo, and a defect in the Tfh function. Depletion of Tregs in these mice rescued the Th1 but not the Th17 response. Our data suggest that IL-6 signaling in effector T cells is required to overcome Treg-mediated suppression in vivo. We show that IL-6 cooperates with IL-1β to block the suppressive effect of Tregs on CD4+ T cells, at least in part by controlling their responsiveness to IL-2. In addition, although IL-6Rα-deficient T cells mount normal primary Th1 responses in the absence of Tregs, they fail to mature into functional memory cells, demonstrating a key role for IL-6 in CD4+ T cell memory formation.

Article and author information

Author details

  1. Simone A Nish

    Yale University School of Medicine, New Haven, United States
    Competing interests
    No competing interests declared.
  2. Dominik Schenten

    Yale University School of Medicine, New Haven, United States
    Competing interests
    No competing interests declared.
  3. Thomas Wunderlich

    Max Planck Institute for Neurological Research Cologne, Cologne, Germany
    Competing interests
    No competing interests declared.
  4. Scott D Pope

    Yale University School of Medicine, New Haven, United States
    Competing interests
    No competing interests declared.
  5. Yan Gao

    Yale University School of Medicine, New Haven, United States
    Competing interests
    No competing interests declared.
  6. Namiko Hoshi

    Yale University School of Medicine, New Haven, United States
    Competing interests
    No competing interests declared.
  7. Shuang Yu

    Yale University School of Medicine, New Haven, United States
    Competing interests
    No competing interests declared.
  8. Xiting Yan

    Yale School of Public Health, New Haven, United States
    Competing interests
    No competing interests declared.
  9. Heung Kyu Lee

    Yale University School of Medicine, New Haven, United States
    Competing interests
    No competing interests declared.
  10. Lesley Pasman

    Yale University School of Medicine, New Haven, United States
    Competing interests
    No competing interests declared.
  11. Igor Brodsky

    Yale University School of Medicine, New Haven, United States
    Competing interests
    No competing interests declared.
  12. Brian Yordy

    Yale University School of Medicine, New Haven, United States
    Competing interests
    No competing interests declared.
  13. Hongyu Zhao

    Yale School of Public Health, New Haven, United States
    Competing interests
    No competing interests declared.
  14. Jens Brüning

    Max Planck Institute for Neurological Research Cologne, Cologne, Germany
    Competing interests
    No competing interests declared.
  15. Ruslan Medzhitov

    Yale University School of Medicine, New Haven, United States
    For correspondence
    ruslan.medzhitov@yale.edu
    Competing interests
    Ruslan Medzhitov, Reviewing editor, eLife.

Reviewing Editor

  1. Tadatsugu Taniguchi, University of Tokyo, Japan

Ethics

Animal experimentation: This study was performed in accordance with the recommendations in the Guide for the Care and Use of Laboratory Animals of the National Institutes of Health. All of the animals were handled according to approved institutional animal care and use committee (IACUC) protocols (#2011-08006) of the Yale University.

Version history

  1. Received: November 25, 2013
  2. Accepted: May 16, 2014
  3. Accepted Manuscript published: May 19, 2014 (version 1)
  4. Version of Record published: June 10, 2014 (version 2)

Copyright

© 2014, Nish et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 6,826
    Page views
  • 935
    Downloads
  • 106
    Citations

Article citation count generated by polling the highest count across the following sources: Crossref, Scopus, PubMed Central.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Simone A Nish
  2. Dominik Schenten
  3. Thomas Wunderlich
  4. Scott D Pope
  5. Yan Gao
  6. Namiko Hoshi
  7. Shuang Yu
  8. Xiting Yan
  9. Heung Kyu Lee
  10. Lesley Pasman
  11. Igor Brodsky
  12. Brian Yordy
  13. Hongyu Zhao
  14. Jens Brüning
  15. Ruslan Medzhitov
(2014)
T cell-intrinsic role of IL-6 signaling in primary and memory responses
eLife 3:e01949.
https://doi.org/10.7554/eLife.01949

Share this article

https://doi.org/10.7554/eLife.01949

Further reading

    1. Immunology and Inflammation
    Toyoshi Yanagihara, Kentaro Hata ... Isamu Okamoto
    Research Article

    Anticancer treatments can result in various adverse effects, including infections due to immune suppression/dysregulation and drug-induced toxicity in the lung. One of the major opportunistic infections is Pneumocystis jirovecii pneumonia (PCP), which can cause severe respiratory complications and high mortality rates. Cytotoxic drugs and immune-checkpoint inhibitors (ICIs) can induce interstitial lung diseases (ILDs). Nonetheless, the differentiation of these diseases can be difficult, and the pathogenic mechanisms of such diseases are not yet fully understood. To better comprehend the immunophenotypes, we conducted an exploratory mass cytometry analysis of immune cell subsets in bronchoalveolar lavage fluid from patients with PCP, cytotoxic drug-induced ILD (DI-ILD), and ICI-associated ILD (ICI-ILD) using two panels containing 64 markers. In PCP, we observed an expansion of the CD16+ T cell population, with the highest CD16+ T proportion in a fatal case. In ICI-ILD, we found an increase in CD57+ CD8+ T cells expressing immune checkpoints (TIGIT+ LAG3+ TIM-3+ PD-1+), FCRL5+ B cells, and CCR2+ CCR5+ CD14+ monocytes. These findings uncover the diverse immunophenotypes and possible pathomechanisms of cancer treatment-related pneumonitis.

    1. Developmental Biology
    2. Immunology and Inflammation
    Amir Hossein Kayvanjoo, Iva Splichalova ... Elvira Mass
    Research Article Updated

    During embryogenesis, the fetal liver becomes the main hematopoietic organ, where stem and progenitor cells as well as immature and mature immune cells form an intricate cellular network. Hematopoietic stem cells (HSCs) reside in a specialized niche, which is essential for their proliferation and differentiation. However, the cellular and molecular determinants contributing to this fetal HSC niche remain largely unknown. Macrophages are the first differentiated hematopoietic cells found in the developing liver, where they are important for fetal erythropoiesis by promoting erythrocyte maturation and phagocytosing expelled nuclei. Yet, whether macrophages play a role in fetal hematopoiesis beyond serving as a niche for maturing erythroblasts remains elusive. Here, we investigate the heterogeneity of macrophage populations in the murine fetal liver to define their specific roles during hematopoiesis. Using a single-cell omics approach combined with spatial proteomics and genetic fate-mapping models, we found that fetal liver macrophages cluster into distinct yolk sac-derived subpopulations and that long-term HSCs are interacting preferentially with one of the macrophage subpopulations. Fetal livers lacking macrophages show a delay in erythropoiesis and have an increased number of granulocytes, which can be attributed to transcriptional reprogramming and altered differentiation potential of long-term HSCs. Together, our data provide a detailed map of fetal liver macrophage subpopulations and implicate macrophages as part of the fetal HSC niche.