Evolution of insect olfactory receptors

  1. Christine Missbach  Is a corresponding author
  2. Hany KM Dweck
  3. Heiko Vogel
  4. Andreas Vilcinskas
  5. Marcus C Stensmyr
  6. Bill S Hansson
  7. Ewald Grosse-Wilde  Is a corresponding author
  1. Max Planck Institute for Chemical Ecology, Germany
  2. Justus-Liebig-Universität Gießen, Germany
  3. Lund University, Sweden
9 figures and 2 tables

Figures

Hexapodan phylogeny.

Phylogeny was adapted from Trautwein et al. (2012). Timescale was adjusted for higher level taxa based on Rota-Stabelli et al. (2013), for Holometabola according to Wiegmann et al. (2009) and the …

https://doi.org/10.7554/eLife.02115.003
Olfactory sensilla on the antennae of L. y-signata (A–E), T. domestica (F–I) and P. siccifolium (K–O).

Animals are depicted next to the corresponding antennal SEM images. (A) Detailed view of the antennae of L. y-signata. The proximal part of the antennae is not only covered with sensilla, but also …

https://doi.org/10.7554/eLife.02115.004
Color coded response profiles of L. y-signata, T. domestica, P. siccifolium and D. melanogaster.

Spikes are sorted by neurons, with the exception of ac1, ac2, and ac4 of D. melanogaster where spike sorting was not possible. Means over 5 to 23 recordings were used as basis for visualization …

https://doi.org/10.7554/eLife.02115.005
Figure 3—source data 1

Excel file of mean responses and baseline firing rate of the different OSN classes of L.y-signata, T. domestica, P.siccifolium, and D. melanogaster.

https://doi.org/10.7554/eLife.02115.006
ORs and GRs of L. y-signata, T. domestica, and P. siccifolium.

(A) Dendrogram displaying the relationship of identified OR and GR candidates of L. y-signata, T. domestica, and P. siccifolium to D. melanogaster (Clyne et al., 1999; Gao and Chess, 1999; Vosshall …

https://doi.org/10.7554/eLife.02115.009
Figure 4—source data 1

Amino acid sequences of putative olfactory and gustatory receptors of L. y-signata, T. domestica, and P. siccifolium.

https://doi.org/10.7554/eLife.02115.010
Figure 4—source data 2

Nucleotide sequences of putative olfactory and gustatory receptors of L. y-signata, T. domestica, and P. siccifolium.

https://doi.org/10.7554/eLife.02115.011
Figure 4—source data 3

MAFFT-alignment of OR and GR candidates of L. y-signata, T. domestica, P. siccifolium and D. melanogaster (Clyne et al., 1999, Gao and Chess, 1999, Vosshall et al., 1999) and Apis mellifera (Robertson and Wanner, 2006) GR and OR proteins, as well as Daphnia pulex GRs done.

https://doi.org/10.7554/eLife.02115.012
Figure 4—source data 4

FastTree file resulting from the MSA of Figure 4—source data 3 (can be opened with FigTree).

https://doi.org/10.7554/eLife.02115.013
Figure 4—source data 5

Tree file resulting from the MSA of Figure 4—source data 3 containing node support values (can be opened e.g., with Adobe Illustrator).

https://doi.org/10.7554/eLife.02115.014
Multiple sequence alignment of T. domestica Orcos.

Alignment of T. domestica Orcos with Orcos of Acyrthosiphon pisum (GI:328723530), A. mellifera (GI:201023349), D. melanogaster (GI:24644231), Schistocerca gregaria (GI:371444780), Pediculus humanus …

https://doi.org/10.7554/eLife.02115.015
Expression of T. domestica Orcos.

Using RT-PCR Orco expression was detected in the antennae (A) of T. domestica, but not in legs (L), heads without antennae and palps (H), and bodies (B). Primer sequences are given in Figure …

https://doi.org/10.7554/eLife.02115.016
Figure 6—source data 1

Primers and their properties used in this study.

https://doi.org/10.7554/eLife.02115.017
Figure 7 with 1 supplement
In situ hybridization on whole mount antennae of T. domestica using a Dig-labeled TdomOrco1 antisense probe.

(A) Part of a T. domestica antenna. Combined image of fluorescent and transmitted light channel taken with cLSM. The positions of pored sensilla are indicated by arrowheads, with the upper sensillum …

https://doi.org/10.7554/eLife.02115.018
Figure 7—figure supplement 1
In situ hybridization on the antenna of T. domestica using sense probes directed against the TdomOrco1.

(A) Transmitted light images taken with cLSM. The position of olfactory sensilla is indicated by arrowheads. (BE) Projection section through the antennae. No Dig signals were obtained using the …

https://doi.org/10.7554/eLife.02115.019
Ionotropic glutamate receptors of L. y-signata, T. domestica, and P. siccifolium.

(A) Analysis of the relationship between L. y-signata, T. domestica, P. siccifolium, D. melanogaster and D. pulex iGluRs and IRs (D. melanogaster and D. pulex sequences were sequences taken from Cros…

https://doi.org/10.7554/eLife.02115.020
Figure 8—source data 1

Amino acid sequences of putative variant ionotropic glutamate receptors of L. y-signata, T. domestica, and P. siccifolium.

https://doi.org/10.7554/eLife.02115.021
Figure 8—source data 2

Nucleotide sequences of putative variant ionotropic glutamate receptors of L. y-signata, T. domestica, and P. siccifolium.

https://doi.org/10.7554/eLife.02115.022
Figure 8—source data 3

MAFFT amino acid alignment of iGluR and IR candidates of L. y-signata, T. domestica, P. siccifolium, D. melanogaster, and D. pulex (D. melanogaster and D. pulex sequences were sequences taken from Croset et al., 2010).

https://doi.org/10.7554/eLife.02115.023
Figure 8—source data 4

FastTree file resulting from the MSA of Figure 4—source data 3 (can be opened with FigTree).

https://doi.org/10.7554/eLife.02115.024
Figure 8—source data 5

Tree file resulting from the MSA of Figure 8—source data 3 containing node support values.

https://doi.org/10.7554/eLife.02115.025
Figure 9 with 2 supplements
In situ hybridization on the antenna of L. y-signata using a Dig-labeled LsigIR25a antisense probe.

On the left: schematic drawings of the position of the different sensillum types on the particular antennal subsegment. The legend for the sensillum types is given below the confocal images. (AD) …

https://doi.org/10.7554/eLife.02115.026
Figure 9—figure supplement 1
In situ hybridization on the antenna of L. y-signata using an antisense probe directed against the IR coreceptor IR8a.

On the left: schematic drawings of the position of the different sensillum types on antennae. The legend for the sensillum types is given below the confocal images. (AI) Labeling of somata in a …

https://doi.org/10.7554/eLife.02115.027
Figure 9—figure supplement 2
In situ hybridization on the antenna of L. y-signata using sense probes directed against the IR coreceptors IR25a, IR8a.

(A, D, G) Transmitted light pictures of antennal excerpts. Asterisks mark positions of basiconic sensilla, arrowheads places were coeloconic-like sensilla are located. No signals were obtained in …

https://doi.org/10.7554/eLife.02115.028

Tables

Table 1

Technical overview of transcriptomes (study accession: PRJEB5093, study unique name: ena-STUDY-MPICE-12-12-2013-15:03:23:860-31)

https://doi.org/10.7554/eLife.02115.007
OrganismSequencing techniqueNumber of readsNumber of contigs above 400 bpN50Average length of contigsTissueSample accessionSecundary accessionSample unique name
Lepismachilis y-signataHiSeq2000 (Illumina)22’444’12868’9841’1791’000antennae and palpsERS384175SAMEA2276780Lysig1
HiSeq2500 (Illumina)77’060’687 paired endantennaeERS384176SAMEA2276781Lysig2
HiSeq2000 (Illumina)25’242’66637’860857heads, whole bodiesERS399748SAMEA2342071LysigMix1
Thermobia domesticaHiSeq2500 (Illumina)27’704’231 paired end31’1721’3491’070antennaeERS384177SAMEA2276782Tdom1
Phyllium siccifoliumHiSeq2500 (Illumina)30’762’777 paired end34’6531’8901’305antennaeERS384178SAMEA2276783Psic1
Table 2

Number of candidate contigs (not unigenes) for the different gene families identified in the transcriptomes of the different species

https://doi.org/10.7554/eLife.02115.008
OrganismOrcoORsGRsIRs
Lepismachilis y-signata7 (5 above 400 bp)17 (16 above 400 bp)
Thermobia domestica6 (1 above 400 bp)9 (3 above 400 bp)19 (9 above 400 bp)
Phyllium siccifolium1 (1 above 400 bp)30 (16 above 400 bp)6 (2 above 400 bp)32 (19 above 400 bp)

Download links