Hidden synaptic differences in a neural circuit underlie differential behavioral susceptibility to a neural injury

  1. Akira Sakurai  Is a corresponding author
  2. Arianna N Tamvacakis
  3. Paul S Katz
  1. Neuroscience Institute, Georgia State University, United States

Abstract

Individuals vary in their responses to stroke and trauma, hampering predictions of outcomes. One reason might be that neural circuits contain hidden variability that becomes relevant only when those individuals are challenged by injury. We found that in the mollusc, Tritonia diomedea, subtle differences between animals within the neural circuit underlying swimming behavior had no behavioral relevance under normal conditions but caused differential vulnerability of the behavior to a particular brain lesion. The extent of motor impairment correlated with the site of spike initiation in a specific neuron in the neural circuit, which was determined by the strength of an inhibitory synapse onto this neuron. Artificially increasing or decreasing this inhibitory synaptic conductance with dynamic clamp correspondingly altered the extent of motor impairment by lesion without affecting normal operation. The results suggest that neural circuit differences could serve as hidden phenotypes for predicting the behavioral outcome of neural damage.

Article and author information

Author details

  1. Akira Sakurai

    Neuroscience Institute, Georgia State University, Atlanta, United States
    For correspondence
    akira@gsu.edu
    Competing interests
    The authors declare that no competing interests exist.
  2. Arianna N Tamvacakis

    Neuroscience Institute, Georgia State University, Atlanta, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Paul S Katz

    Neuroscience Institute, Georgia State University, Atlanta, United States
    Competing interests
    The authors declare that no competing interests exist.

Reviewing Editor

  1. Ronald L Calabrese, Emory University, United States

Ethics

Animal experimentation: The animals are housed in appropriately sized tanks equipped with temperature control system. They are routinely fed and cold-anesthetized prior to dissection.

Version history

  1. Received: February 21, 2014
  2. Accepted: June 9, 2014
  3. Accepted Manuscript published: June 11, 2014 (version 1)
  4. Version of Record published: July 15, 2014 (version 2)

Copyright

© 2014, Sakurai et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,962
    views
  • 106
    downloads
  • 29
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Akira Sakurai
  2. Arianna N Tamvacakis
  3. Paul S Katz
(2014)
Hidden synaptic differences in a neural circuit underlie differential behavioral susceptibility to a neural injury
eLife 3:e02598.
https://doi.org/10.7554/eLife.02598

Share this article

https://doi.org/10.7554/eLife.02598

Further reading

    1. Neuroscience
    Tianhao Chu, Zilong Ji ... Si Wu
    Research Article

    Hippocampal place cells in freely moving rodents display both theta phase precession and procession, which is thought to play important roles in cognition, but the neural mechanism for producing theta phase shift remains largely unknown. Here, we show that firing rate adaptation within a continuous attractor neural network causes the neural activity bump to oscillate around the external input, resembling theta sweeps of decoded position during locomotion. These forward and backward sweeps naturally account for theta phase precession and procession of individual neurons, respectively. By tuning the adaptation strength, our model explains the difference between ‘bimodal cells’ showing interleaved phase precession and procession, and ‘unimodal cells’ in which phase precession predominates. Our model also explains the constant cycling of theta sweeps along different arms in a T-maze environment, the speed modulation of place cells’ firing frequency, and the continued phase shift after transient silencing of the hippocampus. We hope that this study will aid an understanding of the neural mechanism supporting theta phase coding in the brain.

    1. Neuroscience
    Josue M Regalado, Ariadna Corredera Asensio ... Priyamvada Rajasethupathy
    Research Article

    Learning requires the ability to link actions to outcomes. How motivation facilitates learning is not well understood. We designed a behavioral task in which mice self-initiate trials to learn cue-reward contingencies and found that the anterior cingulate region of the prefrontal cortex (ACC) contains motivation-related signals to maximize rewards. In particular, we found that ACC neural activity was consistently tied to trial initiations where mice seek to leave unrewarded cues to reach reward-associated cues. Notably, this neural signal persisted over consecutive unrewarded cues until reward-associated cues were reached, and was required for learning. To determine how ACC inherits this motivational signal we performed projection-specific photometry recordings from several inputs to ACC during learning. In doing so, we identified a ramp in bulk neural activity in orbitofrontal cortex (OFC)-to-ACC projections as mice received unrewarded cues, which continued ramping across consecutive unrewarded cues, and finally peaked upon reaching a reward-associated cue, thus maintaining an extended motivational state. Cellular resolution imaging of OFC confirmed these neural correlates of motivation, and further delineated separate ensembles of neurons that sequentially tiled the ramp. Together, these results identify a mechanism by which OFC maps out task structure to convey an extended motivational state to ACC to facilitate goal-directed learning.