Two-signal requirement for growth-promoting function of Yap in hepatocytes

  1. Tian Su
  2. Tanya Bondar
  3. Xu Zhou
  4. Cuiling Zhang
  5. Hang He
  6. Ruslan Medzhitov  Is a corresponding author
  1. Howard Hughes Medical Institute, Yale University School of Medicine, United States
  2. College of Life Sciences, Peking University, China

Abstract

The transcriptional coactivator Yes-associated protein (Yap) promotes proliferation and inhibits apoptosis, suggesting that Yap functions as an oncogene. Most oncogenes, however, require a combination of at least two signals to promote proliferation. Here we present evidence that Yap activation is insufficient to promote growth in the otherwise normal tissue. Using a mosaic mouse model, we demonstrate that Yap overexpression in a fraction of hepatocytes does not lead to their clonal expansion, as proliferation is counterbalanced by increased apoptosis. To shift the activity of Yap towards growth, a second signal provided by tissue damage or inflammation is required. In response to liver injury, Yap drives clonal expansion, suppresses hepatocyte differentiation and promotes a progenitor phenotype. These results suggest that Yap activation is insufficient to promote growth in the absence of a second signal thus coordinating tissue homeostasis and repair.

Article and author information

Author details

  1. Tian Su

    Department of Immunobiology, Howard Hughes Medical Institute, Yale University School of Medicine, New Haven, United States
    Competing interests
    The authors declare that no competing interests exist.
  2. Tanya Bondar

    Department of Immunobiology, Howard Hughes Medical Institute, Yale University School of Medicine, New Haven, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Xu Zhou

    Department of Immunobiology, Howard Hughes Medical Institute, Yale University School of Medicine, New Haven, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Cuiling Zhang

    Department of Immunobiology, Howard Hughes Medical Institute, Yale University School of Medicine, New Haven, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Hang He

    Peking-Yale Joint Center for Plant Molecular Genetics and Agro-Biotechnology, National Laboratory of Protein Engineering and Plant Genetic Engineering, College of Life Sciences, Peking University, Beijing, China
    Competing interests
    The authors declare that no competing interests exist.
  6. Ruslan Medzhitov

    Department of Immunobiology, Howard Hughes Medical Institute, Yale University School of Medicine, New Haven, United States
    For correspondence
    ruslan.medzhitov@yale.edu
    Competing interests
    The authors declare that no competing interests exist.

Reviewing Editor

  1. Alejandro Sánchez Alvarado, Howard Hughes Medical Institute, Stowers Institute for Medical Research, United States

Ethics

Animal experimentation: All animal experiments were performed with approval by the Institutional Animal Care and Use Committee of Yale University (protocol # 2014-08006).

Version history

  1. Received: March 29, 2014
  2. Accepted: February 9, 2015
  3. Accepted Manuscript published: February 10, 2015 (version 1)
  4. Version of Record published: March 18, 2015 (version 2)

Copyright

© 2015, Su et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 4,379
    Page views
  • 872
    Downloads
  • 51
    Citations

Article citation count generated by polling the highest count across the following sources: Scopus, Crossref, PubMed Central.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Tian Su
  2. Tanya Bondar
  3. Xu Zhou
  4. Cuiling Zhang
  5. Hang He
  6. Ruslan Medzhitov
(2015)
Two-signal requirement for growth-promoting function of Yap in hepatocytes
eLife 4:e02948.
https://doi.org/10.7554/eLife.02948

Share this article

https://doi.org/10.7554/eLife.02948

Further reading

    1. Cell Biology
    Wan-ping Yang, Mei-qi Li ... Qian-qian Luo
    Research Article

    High-altitude polycythemia (HAPC) affects individuals living at high altitudes, characterized by increased red blood cells (RBCs) production in response to hypoxic conditions. The exact mechanisms behind HAPC are not fully understood. We utilized a mouse model exposed to hypobaric hypoxia (HH), replicating the environmental conditions experienced at 6000 m above sea level, coupled with in vitro analysis of primary splenic macrophages under 1% O2 to investigate these mechanisms. Our findings indicate that HH significantly boosts erythropoiesis, leading to erythrocytosis and splenic changes, including initial contraction to splenomegaly over 14 days. A notable decrease in red pulp macrophages (RPMs) in the spleen, essential for RBCs processing, was observed, correlating with increased iron release and signs of ferroptosis. Prolonged exposure to hypoxia further exacerbated these effects, mirrored in human peripheral blood mononuclear cells. Single-cell sequencing showed a marked reduction in macrophage populations, affecting the spleen’s ability to clear RBCs and contributing to splenomegaly. Our findings suggest splenic ferroptosis contributes to decreased RPMs, affecting erythrophagocytosis and potentially fostering continuous RBCs production in HAPC. These insights could guide the development of targeted therapies for HAPC, emphasizing the importance of splenic macrophages in disease pathology.

    1. Cell Biology
    Jurgen Denecke
    Insight

    Mapping proteins in and associated with the Golgi apparatus reveals how this cellular compartment emerges in budding yeast and progresses over time.