Adult-born granule cells mature through two functionally distinct states

  1. János Brunner
  2. Máté Neubrandt
  3. Susan Van-Weert
  4. Tibor Andrási
  5. Felix B Kleine Borgmann
  6. Sebastian Jessberger
  7. János Szabadics  Is a corresponding author
  1. Institute of Experimental Medicine, Hungarian Academy of Sciences, Hungary
  2. University of Zurich, Switzerland

Abstract

Adult-born granule cells (ABGCs) are involved in certain forms of hippocampus-dependent learning and memory. It has been proposed that young but functionally integrated ABGCs (4-weeks-old) specifically contribute to pattern separation functions of the dentate gyrus due to their heightened excitability, whereas old ABGCs (>8-weeks-old) lose these capabilities. Measuring multiple cellular and integrative characteristics of 3-10 weeks old individual ABGCs, we show that ABGCs consist of two functionally distinguishable populations showing highly distinct input integration properties (one group being highly sensitive to narrow input intensity ranges while the other group linearly reports input strength) that are largely independent of the cellular age and maturation stage, suggesting that 'classmate' cells (born during the same period) can contribute to the network with fundamentally different functions. Thus, ABGCs provide two temporally overlapping but functionally distinct neuronal cell populations, adding a novel level of complexity to our understanding of how life-long neurogenesis contributes to adult brain function.

Article and author information

Author details

  1. János Brunner

    Institute of Experimental Medicine, Hungarian Academy of Sciences, Budapest, Hungary
    Competing interests
    The authors declare that no competing interests exist.
  2. Máté Neubrandt

    Institute of Experimental Medicine, Hungarian Academy of Sciences, Budapest, Hungary
    Competing interests
    The authors declare that no competing interests exist.
  3. Susan Van-Weert

    Institute of Experimental Medicine, Hungarian Academy of Sciences, Budapest, Hungary
    Competing interests
    The authors declare that no competing interests exist.
  4. Tibor Andrási

    Institute of Experimental Medicine, Hungarian Academy of Sciences, Budapest, Hungary
    Competing interests
    The authors declare that no competing interests exist.
  5. Felix B Kleine Borgmann

    University of Zurich, Zurich, Switzerland
    Competing interests
    The authors declare that no competing interests exist.
  6. Sebastian Jessberger

    University of Zurich, Zurich, Switzerland
    Competing interests
    The authors declare that no competing interests exist.
  7. János Szabadics

    Institute of Experimental Medicine, Hungarian Academy of Sciences, Budapest, Hungary
    For correspondence
    szabadics.janos@koki.mta.hu
    Competing interests
    The authors declare that no competing interests exist.

Ethics

Animal experimentation: All experimental procedures were performed in accordance with the ethical guidelines of the Institute of Experimental Medicine Protection of Research Subjects Committee (permission: 22.1/1760/003/2009) and were approved by the local virus safety committee.

Reviewing Editor

  1. Gary L Westbrook, Vollum Institute, United States

Publication history

  1. Received: April 16, 2014
  2. Accepted: July 23, 2014
  3. Accepted Manuscript published: July 24, 2014 (version 1)
  4. Version of Record published: August 13, 2014 (version 2)

Copyright

© 2014, Brunner et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 3,195
    Page views
  • 320
    Downloads
  • 29
    Citations

Article citation count generated by polling the highest count across the following sources: Scopus, Crossref, PubMed Central.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. János Brunner
  2. Máté Neubrandt
  3. Susan Van-Weert
  4. Tibor Andrási
  5. Felix B Kleine Borgmann
  6. Sebastian Jessberger
  7. János Szabadics
(2014)
Adult-born granule cells mature through two functionally distinct states
eLife 3:e03104.
https://doi.org/10.7554/eLife.03104

Further reading

    1. Neuroscience
    Claire Wyart
    Insight

    Sensory neurons previously shown to optimize speed and balance in fish by providing information about the curvature of the spine show similar morphology and connectivity in mice.

    1. Neuroscience
    Catharina Zich, Andrew J Quinn ... Sven Bestmann
    Research Article

    Beta oscillations in human sensorimotor cortex are hallmark signatures of healthy and pathological movement. In single trials, beta oscillations include bursts of intermittent, transient periods of high-power activity. These burst events have been linked to a range of sensory and motor processes, but their precise spatial, spectral, and temporal structure remains unclear. Specifically, a role for beta burst activity in information coding and communication suggests spatiotemporal patterns, or travelling wave activity, along specific anatomical gradients. We here show in human magnetoencephalography recordings that burst activity in sensorimotor cortex occurs in planar spatiotemporal wave-like patterns that dominate along two axes either parallel or perpendicular to the central sulcus. Moreover, we find that the two propagation directions are characterised by distinct anatomical and physiological features. Finally, our results suggest that sensorimotor beta bursts occurring before and after a movement can be distinguished by their anatomical, spectral and spatiotemporal characteristics, indicating distinct functional roles.