CD28 expression is required after T cell priming for helper T cell responses and protective immunity to infection

  1. Michelle A Linterman  Is a corresponding author
  2. Alice E Denton
  3. Devina P Divekar
  4. Ilona Zvetkova
  5. Leanne Kane
  6. Cristina Ferreira
  7. Marc Veldhoen
  8. Simon Clare
  9. Gordon Dougan
  10. Marion Espéli
  11. Kenneth G C Smith
  1. Babraham Institute, United Kingdom
  2. University of Cambridge, United Kingdom
  3. University of East Anglia, United Kingdom
  4. University of Cambridge Metabolic Research Laboratories, United Kingdom
  5. Wellcome Trust Sanger Institute, United Kingdom
  6. UMR-S996, LabEx LERMIT, France
  7. University of Cambridge School of Clinical Medicine, United Kingdom

Abstract

The costimulatory molecule CD28 is essential for activation of helper T cells. Despite this critical role, it is not known whether CD28 has functions in maintaining T cell responses following activation. To determine the role for CD28 after T cell priming we generated a strain of mice where CD28 is removed from CD4+ T cells after priming. We show that continued CD28 expression is important for effector CD4+ T cells following infection; maintained CD28 is required for the expansion of T helper type 1 cells, and for the differentiation and maintenance of T follicular helper cells during viral infection. Persistent CD28 is also required for clearance of the bacterium Citrobacter rodentium from the gastrointestinal tract. Together, this study demonstrates that CD28 persistence is required for helper T cell polarization in response to infection, describing a novel function for CD28 that is distinct from its role in T cell priming.

Article and author information

Author details

  1. Michelle A Linterman

    Babraham Institute, Cambridge, United Kingdom
    For correspondence
    Michelle.Linterman@babraham.ac.uk
    Competing interests
    The authors declare that no competing interests exist.
  2. Alice E Denton

    University of Cambridge, Cambridge, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  3. Devina P Divekar

    University of East Anglia, Norwich, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  4. Ilona Zvetkova

    University of Cambridge Metabolic Research Laboratories, Cambridge, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  5. Leanne Kane

    Wellcome Trust Sanger Institute, Cambridge, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  6. Cristina Ferreira

    Babraham Institute, Cambridge, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  7. Marc Veldhoen

    Babraham Institute, Cambridge, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  8. Simon Clare

    Wellcome Trust Sanger Institute, Cambridge, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  9. Gordon Dougan

    Wellcome Trust Sanger Institute, Cambridge, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  10. Marion Espéli

    UMR-S996, LabEx LERMIT, Clamart, France
    Competing interests
    The authors declare that no competing interests exist.
  11. Kenneth G C Smith

    University of Cambridge School of Clinical Medicine, Cambridge, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.

Ethics

Animal experimentation: All experiments were performed according to the regulations of the UK Home Office Scientific Procedures Act (1986) under the UK Home Office license PPL 80/2438, or PPL 80/2596.

Copyright

© 2014, Linterman et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 4,602
    views
  • 537
    downloads
  • 84
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Michelle A Linterman
  2. Alice E Denton
  3. Devina P Divekar
  4. Ilona Zvetkova
  5. Leanne Kane
  6. Cristina Ferreira
  7. Marc Veldhoen
  8. Simon Clare
  9. Gordon Dougan
  10. Marion Espéli
  11. Kenneth G C Smith
(2014)
CD28 expression is required after T cell priming for helper T cell responses and protective immunity to infection
eLife 3:e03180.
https://doi.org/10.7554/eLife.03180

Share this article

https://doi.org/10.7554/eLife.03180

Further reading

    1. Immunology and Inflammation
    Jian Cui, Hua Li ... Congqing Wu
    Short Report

    Systemic blood coagulation accompanies inflammation during severe infections like sepsis and COVID. We previously established a link between coagulopathy and pyroptosis, a vital defense mechanism against infection. During pyroptosis, the formation of gasdermin-D (GSDMD) pores on the plasma membrane leads to the release of tissue factor (TF)-positive microvesicles (MVs) that are procoagulant. Mice lacking GSDMD release fewer of these procoagulant MVs. However, the specific mechanisms coupling the activation of GSDMD to MV release remain unclear. Plasma membrane rupture (PMR) in pyroptosis was recently reported to be actively mediated by the transmembrane protein Ninjurin-1 (NINJ1). Here, we show that NINJ1 promotes procoagulant MV release during pyroptosis. Haploinsufficiency or glycine inhibition of NINJ1 limited the release of procoagulant MVs and inflammatory cytokines, and partially protected against blood coagulation and lethality triggered by bacterial flagellin. Our findings suggest a crucial role for NINJ1-dependent PMR in inflammasome-induced blood coagulation and inflammation.

    1. Immunology and Inflammation
    2. Neuroscience
    Rocio Vicario, Stamatina Fragkogianni ... Frédéric Geissmann
    Research Article

    Somatic genetic heterogeneity resulting from post-zygotic DNA mutations is widespread in human tissues and can cause diseases, however, few studies have investigated its role in neurodegenerative processes such as Alzheimer’s disease (AD). Here, we report the selective enrichment of microglia clones carrying pathogenic variants, that are not present in neuronal, glia/stromal cells, or blood, from patients with AD in comparison to age-matched controls. Notably, microglia-specific AD-associated variants preferentially target the MAPK pathway, including recurrent CBL ring-domain mutations. These variants activate ERK and drive a microglia transcriptional program characterized by a strong neuro-inflammatory response, both in vitro and in patients. Although the natural history of AD-associated microglial clones is difficult to establish in humans, microglial expression of a MAPK pathway activating variant was previously shown to cause neurodegeneration in mice, suggesting that AD-associated neuroinflammatory microglial clones may contribute to the neurodegenerative process in patients.