High temperature sensitivity is intrinsic to voltage-gated potassium channels

  1. Fan Yang
  2. Jie Zheng  Is a corresponding author
  1. University of California, Davis, United States

Abstract

Temperature-sensitive transient receptor potential (TRP) ion channels are members of the large tetrameric cation channels superfamily but are considered to be uniquely sensitive to heat, which has been presumed to be due to the existence of an unidentified temperature-sensing domain. Here we report that the homologous voltage-gated potassium (Kv) channels also exhibit high temperature sensitivity comparable to that of TRPV1, which is detectable under specific conditions when the voltage sensor is functionally decoupled from the activation gate through either intrinsic mechanisms or mutations. Interestingly, mutations could tune Shaker channel to be either heat-activated or heat-deactivated. Therefore, high temperature sensitivity is intrinsic to both TRP and Kv channels. Our findings suggest important physiological roles of heat-induced variation in Kv channel activities. Mechanistically our findings indicate that temperature-sensing TRP channels may not contain a specialized heat-sensor domain; instead, non-obligatory allosteric gating permits the intrinsic heat sensitivity to drive channel activation, allowing temperature-sensitive TRP channels to function as polymodal nociceptors.

Article and author information

Author details

  1. Fan Yang

    University of California, Davis, Davis, United States
    Competing interests
    The authors declare that no competing interests exist.
  2. Jie Zheng

    University of California, Davis, Davis, United States
    For correspondence
    jzheng@ucdavis.edu
    Competing interests
    The authors declare that no competing interests exist.

Reviewing Editor

  1. Richard Aldrich, The University of Texas at Austin, United States

Version history

  1. Received: May 4, 2014
  2. Accepted: July 15, 2014
  3. Accepted Manuscript published: July 16, 2014 (version 1)
  4. Version of Record published: August 7, 2014 (version 2)

Copyright

© 2014, Yang & Zheng

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 4,132
    views
  • 472
    downloads
  • 58
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Fan Yang
  2. Jie Zheng
(2014)
High temperature sensitivity is intrinsic to voltage-gated potassium channels
eLife 3:e03255.
https://doi.org/10.7554/eLife.03255

Share this article

https://doi.org/10.7554/eLife.03255

Further reading

    1. Biochemistry and Chemical Biology
    2. Structural Biology and Molecular Biophysics
    Amy H Andreotti, Volker Dötsch
    Editorial

    The articles in this special issue highlight how modern cellular, biochemical, biophysical and computational techniques are allowing deeper and more detailed studies of allosteric kinase regulation.

    1. Developmental Biology
    2. Structural Biology and Molecular Biophysics
    Samuel C Griffiths, Jia Tan ... Hsin-Yi Henry Ho
    Research Article Updated

    The receptor tyrosine kinase ROR2 mediates noncanonical WNT5A signaling to orchestrate tissue morphogenetic processes, and dysfunction of the pathway causes Robinow syndrome, brachydactyly B, and metastatic diseases. The domain(s) and mechanisms required for ROR2 function, however, remain unclear. We solved the crystal structure of the extracellular cysteine-rich (CRD) and Kringle (Kr) domains of ROR2 and found that, unlike other CRDs, the ROR2 CRD lacks the signature hydrophobic pocket that binds lipids/lipid-modified proteins, such as WNTs, suggesting a novel mechanism of ligand reception. Functionally, we showed that the ROR2 CRD, but not other domains, is required and minimally sufficient to promote WNT5A signaling, and Robinow mutations in the CRD and the adjacent Kr impair ROR2 secretion and function. Moreover, using function-activating and -perturbing antibodies against the Frizzled (FZ) family of WNT receptors, we demonstrate the involvement of FZ in WNT5A-ROR signaling. Thus, ROR2 acts via its CRD to potentiate the function of a receptor super-complex that includes FZ to transduce WNT5A signals.