Identification of motor neurons and a mechanosensitive sensory neuron in the defecation circuitry of Drosophila larvae

  1. Wei Zhang
  2. Zhiqiang Yan
  3. Bingxue Li
  4. Lily Yeh Jan
  5. Yuh Nung Jan  Is a corresponding author
  1. Howard Hughes Medical Institute, University of California, San Francisco, United States
  2. Fudan University, China

Abstract

Defecation allows the body to eliminate waste, an essential step in food processing for animal survival.In contrast to the extensive studies of feeding, its obligate counterpart, defecation, has received much less attention until recently. Here we report our characterizations of the defecation behavior of Drosophila larvae and its neural basis. Drosophila larvae display defecation cycles of stereotypic frequency, involving sequential contraction of hindgut and anal sphincter. The defecation behavior requires two groups of motor neurons that innervate hindgut and anal sphincter, respectively, and can excite gut muscles directly. These two groups of motor neurons fire sequentially with the same periodicity as the defecation behavior, as revealed by in vivo Ca2+ imaging. Moreover, we identified a single mechanosensitive sensory neuron that innervates the anal slit and senses the opening of the intestine terminus. This anus sensory neuron relies on the TRP channel NOMPC but not INACTIVE, NANCHUNG, or PIEZO for mechanotransduction.

Article and author information

Author details

  1. Wei Zhang

    Howard Hughes Medical Institute, University of California, San Francisco, San Francisco, United States
    Competing interests
    The authors declare that no competing interests exist.
  2. Zhiqiang Yan

    Howard Hughes Medical Institute, University of California, San Francisco, San Francisco, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Bingxue Li

    Fudan University, Shanghai, China
    Competing interests
    The authors declare that no competing interests exist.
  4. Lily Yeh Jan

    Howard Hughes Medical Institute, University of California, San Francisco, San Francisco, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Yuh Nung Jan

    Howard Hughes Medical Institute, University of California, San Francisco, San Francisco, United States
    For correspondence
    yuhnung.jan@ucsf.edu
    Competing interests
    The authors declare that no competing interests exist.

Copyright

© 2014, Zhang et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 4,862
    views
  • 505
    downloads
  • 35
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Wei Zhang
  2. Zhiqiang Yan
  3. Bingxue Li
  4. Lily Yeh Jan
  5. Yuh Nung Jan
(2014)
Identification of motor neurons and a mechanosensitive sensory neuron in the defecation circuitry of Drosophila larvae
eLife 3:e03293.
https://doi.org/10.7554/eLife.03293

Share this article

https://doi.org/10.7554/eLife.03293

Further reading

    1. Genetics and Genomics
    2. Neuroscience
    Monique Marylin Alves de Almeida, Yves De Repentigny ... Rashmi Kothary
    Research Article

    Spinal muscular atrophy (SMA) is caused by mutations in the Survival Motor Neuron 1 (SMN1) gene. While traditionally viewed as a motor neuron disorder, there is involvement of various peripheral organs in SMA. Notably, fatty liver has been observed in SMA mouse models and SMA patients. Nevertheless, it remains unclear whether intrinsic depletion of SMN protein in the liver contributes to pathology in the peripheral or central nervous systems. To address this, we developed a mouse model with a liver-specific depletion of SMN by utilizing an Alb-Cre transgene together with one Smn2B allele and one Smn1 exon 7 allele flanked by loxP sites. Initially, we evaluated phenotypic changes in these mice at postnatal day 19 (P19), when the severe model of SMA, the Smn2B/- mice, exhibit many symptoms of the disease. The liver-specific SMN depletion does not induce motor neuron death, neuromuscular pathology or muscle atrophy, characteristics typically observed in the Smn2B/- mouse at P19. However, mild liver steatosis was observed, although no changes in liver function were detected. Notably, pancreatic alterations resembled that of Smn2B/-mice, with a decrease in insulin-producing β-cells and an increase in glucagon-producingα-cells, accompanied by a reduction in blood glucose and an increase in plasma glucagon and glucagon-like peptide (GLP-1). These changes were transient, as mice at P60 exhibited recovery of liver and pancreatic function. While the mosaic pattern of the Cre-mediated excision precludes definitive conclusions regarding the contribution of liver-specific SMN depletion to overall tissue pathology, our findings highlight an intricate connection between liver function and pancreatic abnormalities in SMA.

    1. Neuroscience
    Maren Klingelhöfer-Jens, Katharina Hutterer ... Tina B Lonsdorf
    Research Article

    Childhood adversity is a strong predictor of developing psychopathological conditions. Multiple theories on the mechanisms underlying this association have been suggested which, however, differ in the operationalization of ‘exposure.’ Altered (threat) learning mechanisms represent central mechanisms by which environmental inputs shape emotional and cognitive processes and ultimately behavior. 1402 healthy participants underwent a fear conditioning paradigm (acquisition training, generalization), while acquiring skin conductance responses (SCRs) and ratings (arousal, valence, and contingency). Childhood adversity was operationalized as (1) dichotomization, and following (2) the specificity model, (3) the cumulative risk model, and (4) the dimensional model. Individuals exposed to childhood adversity showed blunted physiological reactivity in SCRs, but not ratings, and reduced CS+/CS- discrimination during both phases, mainly driven by attenuated CS+ responding. The latter was evident across different operationalizations of ‘exposure’ following the different theories. None of the theories tested showed clear explanatory superiority. Notably, a remarkably different pattern of increased responding to the CS- is reported in the literature for anxiety patients, suggesting that individuals exposed to childhood adversity may represent a specific sub-sample. We highlight that theories linking childhood adversity to (vulnerability to) psychopathology need refinement.