Epsin deficiency impairs endocytosis by stalling the actin-dependent invagination of endocytic clathrin-coated pits

  1. Mirko Messa
  2. Ruben Fernandez-Busnadiego
  3. Elizabeth Wen Sun
  4. Hong Chen
  5. Heather Czapla
  6. Kristie Wrasman
  7. Yumei Wu
  8. Genevieve Ko
  9. Theodora Ross
  10. Beverly Wendland
  11. Pietro De Camilli  Is a corresponding author
  1. Howard Hughes Medical Institute, Yale University School of Medicine, United States
  2. Max-Planck-Institut für Biochemie, Germany
  3. Oklahoma Medical Research Foundation, United States
  4. Johns Hopkins University, United States
  5. UT Southwestern Medical Center, United States

Abstract

Epsin is an evolutionarily conserved endocytic clathrin adaptor whose most critical function(s) in clathrin coat dynamics remain(s) elusive. To elucidate such function(s), we generated embryonic fibroblasts from conditional epsin triple KO mice. Triple KO cells displayed a dramatic cell division defect. Additionally, a robust impairment in clathrin-mediated endocytosis was observed, with an accumulation of early and U-shaped pits. This defect correlated with a perturbation of the coupling between the clathrin coat and the actin cytoskeleton, which we confirmed in a cell-free assay of endocytosis. Our results indicate that a key evolutionary conserved function of epsin, in addition to other roles that include as we show here a low affinity interaction with SNAREs, is to help generate the force that leads to invagination and then fission of clathrin-coated pits.

Article and author information

Author details

  1. Mirko Messa

    Howard Hughes Medical Institute, Yale University School of Medicine, New Haven, United States
    Competing interests
    The authors declare that no competing interests exist.
  2. Ruben Fernandez-Busnadiego

    Max-Planck-Institut für Biochemie, Martinsried, Germany
    Competing interests
    The authors declare that no competing interests exist.
  3. Elizabeth Wen Sun

    Howard Hughes Medical Institute, Yale University School of Medicine, New Haven, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Hong Chen

    Oklahoma Medical Research Foundation, New Haven, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Heather Czapla

    Howard Hughes Medical Institute, Yale University School of Medicine, New Haven, United States
    Competing interests
    The authors declare that no competing interests exist.
  6. Kristie Wrasman

    Johns Hopkins University, Baltimore, United States
    Competing interests
    The authors declare that no competing interests exist.
  7. Yumei Wu

    Howard Hughes Medical Institute, Yale University School of Medicine, New Haven, United States
    Competing interests
    The authors declare that no competing interests exist.
  8. Genevieve Ko

    Howard Hughes Medical Institute, Yale University School of Medicine, New Haven, United States
    Competing interests
    The authors declare that no competing interests exist.
  9. Theodora Ross

    UT Southwestern Medical Center, Dallas, United States
    Competing interests
    The authors declare that no competing interests exist.
  10. Beverly Wendland

    Johns Hopkins University, Baltimore, United States
    Competing interests
    The authors declare that no competing interests exist.
  11. Pietro De Camilli

    Howard Hughes Medical Institute, Yale University School of Medicine, New Haven, United States
    For correspondence
    pietro.decamilli@yale.edu
    Competing interests
    The authors declare that no competing interests exist.

Reviewing Editor

  1. Suzanne R Pfeffer, Stanford University, United States

Ethics

Animal experimentation: The institutional animal care and use committee (IACUC) of the Yale University and the approved animal protocol is 2012-07422. The institutional guidelines for the care and use of laboratory animals were followed

Version history

  1. Received: May 7, 2014
  2. Accepted: August 12, 2014
  3. Accepted Manuscript published: August 13, 2014 (version 1)
  4. Version of Record published: September 12, 2014 (version 2)

Copyright

© 2014, Messa et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 5,012
    views
  • 718
    downloads
  • 100
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Mirko Messa
  2. Ruben Fernandez-Busnadiego
  3. Elizabeth Wen Sun
  4. Hong Chen
  5. Heather Czapla
  6. Kristie Wrasman
  7. Yumei Wu
  8. Genevieve Ko
  9. Theodora Ross
  10. Beverly Wendland
  11. Pietro De Camilli
(2014)
Epsin deficiency impairs endocytosis by stalling the actin-dependent invagination of endocytic clathrin-coated pits
eLife 3:e03311.
https://doi.org/10.7554/eLife.03311

Share this article

https://doi.org/10.7554/eLife.03311

Further reading

    1. Cell Biology
    2. Neuroscience
    Georg Kislinger, Gunar Fabig ... Martina Schifferer
    Tools and Resources

    Like other volume electron microscopy approaches, automated tape-collecting ultramicrotomy (ATUM) enables imaging of serial sections deposited on thick plastic tapes by scanning electron microscopy (SEM). ATUM is unique in enabling hierarchical imaging and thus efficient screening for target structures, as needed for correlative light and electron microscopy. However, SEM of sections on tape can only access the section surface, thereby limiting the axial resolution to the typical size of cellular vesicles with an order of magnitude lower than the acquired xy resolution. In contrast, serial-section electron tomography (ET), a transmission electron microscopy-based approach, yields isotropic voxels at full EM resolution, but requires deposition of sections on electron-stable thin and fragile films, thus making screening of large section libraries difficult and prone to section loss. To combine the strength of both approaches, we developed ‘ATUM-Tomo, a hybrid method, where sections are first reversibly attached to plastic tape via a dissolvable coating, and after screening detached and transferred to the ET-compatible thin films. As a proof-of-principle, we applied correlative ATUM-Tomo to study ultrastructural features of blood-brain barrier (BBB) leakiness around microthrombi in a mouse model of traumatic brain injury. Microthrombi and associated sites of BBB leakiness were identified by confocal imaging of injected fluorescent and electron-dense nanoparticles, then relocalized by ATUM-SEM, and finally interrogated by correlative ATUM-Tomo. Overall, our new ATUM-Tomo approach will substantially advance ultrastructural analysis of biological phenomena that require cell- and tissue-level contextualization of the finest subcellular textures.

    1. Cell Biology
    KC Farrell, Jennifer T Wang, Tim Stearns
    Research Article

    The spindle assembly checkpoint (SAC) temporally regulates mitosis by preventing progression from metaphase to anaphase until all chromosomes are correctly attached to the mitotic spindle. Centrosomes refine the spatial organization of the mitotic spindle at the spindle poles. However, centrosome loss leads to elongated mitosis, suggesting that centrosomes also inform the temporal organization of mitosis in mammalian cells. Here, we find that the mitotic delay in acentrosomal cells is enforced by the SAC in a MPS1-dependent manner, and that a SAC-dependent mitotic delay is required for bipolar cell division to occur in acentrosomal cells. Although acentrosomal cells become polyploid, polyploidy is not sufficient to cause dependency on a SAC-mediated delay to complete cell division. Rather, the division failure in absence of MPS1 activity results from mitotic exit occurring before acentrosomal spindles can become bipolar. Furthermore, prevention of centrosome separation suffices to make cell division reliant on a SAC-dependent mitotic delay. Thus, centrosomes and their definition of two spindle poles early in mitosis provide a ‘timely two-ness’ that allows cell division to occur in absence of a SAC-dependent mitotic delay.