Post-transcriptional regulation of satellite cell quiescence by TTP-mediated mRNA decay

  1. Melissa A Hausburg
  2. Jason D Doles
  3. Sandra L Clement
  4. Adam B Cadwallader
  5. Monica N Hall
  6. Perry J Blackshear
  7. Jens Lykke-Andersen
  8. Bradley B Olwin  Is a corresponding author
  1. Ampio Pharmaceuticals, Inc., United States
  2. University of Colorado, United States
  3. University of Colorado Boulder, United States

Abstract

Skeletal muscle satellite cells in their niche are quiescent and upon muscle injury, exit quiescence, proliferate to repair muscle tissue, and self-renew to replenish the satellite cell population. To understand the mechanisms involved in maintaining satellite cell quiescence, we identified gene transcripts that were differentially expressed during satellite cell activation following muscle injury. Transcripts encoding RNA binding proteins were among the most significantly changed and included the mRNA decay factor Tristetraprolin. Tristetraprolin promotes the decay of MyoD mRNA, which encodes a transcriptional regulator of myogenic commitment, via binding to the MyoD mRNA 3' untranslated region. Upon satellite cell activation, p38α/β MAPK phosphorylates MAPKAP2 and inactivates Tristetraprolin, stabilizing MyoD mRNA. Satellite cell specific knockdown of Tristetraprolin precociously activates satellite cells in vivo, enabling MyoD accumulation, differentiation and cell fusion into myofibers. Regulation of mRNAs by Tristetraprolin appears to function as one of several critical post-transcriptional regulatory mechanisms controlling satellite cell homeostasis.

Article and author information

Author details

  1. Melissa A Hausburg

    Ampio Pharmaceuticals, Inc., Englewood, United States
    Competing interests
    The authors declare that no competing interests exist.
  2. Jason D Doles

    Department of Molecular, Cellular, and Developmental Biology, University of Colorado, Boulder, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Sandra L Clement

    Department of Molecular, Cellular, and Developmental Biology, University of Colorado, Boulder, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Adam B Cadwallader

    Department of Molecular, Cellular, and Developmental Biology, University of Colorado, Boulder, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Monica N Hall

    Department of Molecular, Cellular, and Developmental Biology, University of Colorado, Boulder, United States
    Competing interests
    The authors declare that no competing interests exist.
  6. Perry J Blackshear

    Department of Molecular, Cellular, and Developmental Biology, University of Colorado, Boulder, United States
    Competing interests
    The authors declare that no competing interests exist.
  7. Jens Lykke-Andersen

    Department of Molecular, Cellular, and Developmental Biology, University of Colorado, Boulder, United States
    Competing interests
    The authors declare that no competing interests exist.
  8. Bradley B Olwin

    Department of Molecular, Cellular, and Developmental Biology, University of Colorado Boulder, Boulder, United States
    For correspondence
    olwin@colorado.edu
    Competing interests
    The authors declare that no competing interests exist.

Ethics

Animal experimentation: This study was performed in strict accordance with the recommendations in the Guide for the Care and Use of Laboratory Animals of the National Institutes of Health. All of the animals were handled according to approved institutional animal care and use committee (IACUC) protocols (#1012.01, #1104.08) of the University of Colorado-Boulder.

Copyright

This is an open-access article, free of all copyright, and may be freely reproduced, distributed, transmitted, modified, built upon, or otherwise used by anyone for any lawful purpose. The work is made available under the Creative Commons CC0 public domain dedication.

Metrics

  • 2,867
    views
  • 774
    downloads
  • 119
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Melissa A Hausburg
  2. Jason D Doles
  3. Sandra L Clement
  4. Adam B Cadwallader
  5. Monica N Hall
  6. Perry J Blackshear
  7. Jens Lykke-Andersen
  8. Bradley B Olwin
(2015)
Post-transcriptional regulation of satellite cell quiescence by TTP-mediated mRNA decay
eLife 4:e03390.
https://doi.org/10.7554/eLife.03390

Share this article

https://doi.org/10.7554/eLife.03390

Further reading

    1. Cell Biology
    2. Developmental Biology
    Sofía Suárez Freire, Sebastián Perez-Pandolfo ... Mariana Melani
    Research Article

    Eukaryotic cells depend on exocytosis to direct intracellularly synthesized material toward the extracellular space or the plasma membrane, so exocytosis constitutes a basic function for cellular homeostasis and communication between cells. The secretory pathway includes biogenesis of secretory granules (SGs), their maturation and fusion with the plasma membrane (exocytosis), resulting in release of SG content to the extracellular space. The larval salivary gland of Drosophila melanogaster is an excellent model for studying exocytosis. This gland synthesizes mucins that are packaged in SGs that sprout from the trans-Golgi network and then undergo a maturation process that involves homotypic fusion, condensation, and acidification. Finally, mature SGs are directed to the apical domain of the plasma membrane with which they fuse, releasing their content into the gland lumen. The exocyst is a hetero-octameric complex that participates in tethering of vesicles to the plasma membrane during constitutive exocytosis. By precise temperature-dependent gradual activation of the Gal4-UAS expression system, we have induced different levels of silencing of exocyst complex subunits, and identified three temporarily distinctive steps of the regulated exocytic pathway where the exocyst is critically required: SG biogenesis, SG maturation, and SG exocytosis. Our results shed light on previously unidentified functions of the exocyst along the exocytic pathway. We propose that the exocyst acts as a general tethering factor in various steps of this cellular process.

    1. Cell Biology
    2. Developmental Biology
    Heungjin Ryu, Kibum Nam ... Jung-Hoon Park
    Research Article

    In most murine species, spermatozoa exhibit a falciform apical hook at the head end. The function of the sperm hook is not yet clearly understood. In this study, we investigate the role of the sperm hook in the migration of spermatozoa through the female reproductive tract in Mus musculus (C57BL/6), using a deep tissue imaging custom-built two-photon microscope. Through live reproductive tract imaging, we found evidence indicating that the sperm hook aids in the attachment of spermatozoa to the epithelium and facilitates interactions between spermatozoa and the epithelium during migration in the uterus and oviduct. We also observed synchronized sperm beating, which resulted from the spontaneous unidirectional rearrangement of spermatozoa in the uterus. Based on live imaging of spermatozoa-epithelium interaction dynamics, we propose that the sperm hook plays a crucial role in successful migration through the female reproductive tract by providing anchor-like mechanical support and facilitating interactions between spermatozoa and the female reproductive tract in the house mouse.