Reconceiving the hippocampal map as a topological template

  1. Yuri Dabaghian  Is a corresponding author
  2. Vicky L Brandt
  3. Loren M Frank
  1. Jan and Dan Duncan Neurological Research Institute at Texas Children's Hospital, United States
  2. University of California, San Francisco, United States

Abstract

The role of the hippocampus in spatial cognition is incontrovertible yet controversial. Place cells, initially thought to be location-specifiers, turn out to respond promiscuously to a wide range of stimuli. Here we test the idea, which we have recently shown works in a computational model, that the hippocampal place cells may ultimately be interested in a space's topological qualities (its connectivity) more than its geometry (distances and angles); such higher-order functioning would be more consistent with other known hippocampal functions. We recorded place cell activity in rats exploring morphing linear tracks that allowed us to dissociate the geometry of the track from its topology. The resulting place fields preserved the relative sequence of places visited along the track but did not vary with the metrical features of the track or the direction of the rat's movement. These results suggest a reinterpretation of previous studies and new directions for future experiments.

Article and author information

Author details

  1. Yuri Dabaghian

    Jan and Dan Duncan Neurological Research Institute at Texas Children's Hospital, Houston, United States
    For correspondence
    dabaghia@bcm.edu
    Competing interests
    The authors declare that no competing interests exist.
  2. Vicky L Brandt

    Jan and Dan Duncan Neurological Research Institute at Texas Children's Hospital, Houston, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Loren M Frank

    University of California, San Francisco, San Francisco, United States
    Competing interests
    The authors declare that no competing interests exist.

Reviewing Editor

  1. Howard Eichenbaum, Boston University, United States

Ethics

Animal experimentation: All the experimental procedures were approved by the Institutional Animal Care and Use Committee at UCSF, Approval Number: AN081431-03D

Version history

  1. Received: May 26, 2014
  2. Accepted: August 19, 2014
  3. Accepted Manuscript published: August 20, 2014 (version 1)
  4. Version of Record published: September 12, 2014 (version 2)

Copyright

© 2014, Dabaghian et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 3,637
    views
  • 603
    downloads
  • 101
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Yuri Dabaghian
  2. Vicky L Brandt
  3. Loren M Frank
(2014)
Reconceiving the hippocampal map as a topological template
eLife 3:e03476.
https://doi.org/10.7554/eLife.03476

Share this article

https://doi.org/10.7554/eLife.03476

Further reading

    1. Neuroscience
    Nicholas GW Kennedy, Jessica C Lee ... Nathan M Holmes
    Research Article

    How is new information organized in memory? According to latent state theories, this is determined by the level of surprise, or prediction error, generated by the new information: a small prediction error leads to the updating of existing memory, large prediction error leads to encoding of a new memory. We tested this idea using a protocol in which rats were first conditioned to fear a stimulus paired with shock. The stimulus was then gradually extinguished by progressively reducing the shock intensity until the stimulus was presented alone. Consistent with latent state theories, this gradual extinction protocol (small prediction errors) was better than standard extinction (large prediction errors) in producing long-term suppression of fear responses, and the benefit of gradual extinction was due to updating of the conditioning memory with information about extinction. Thus, prediction error determines how new information is organized in memory, and latent state theories adequately describe the ways in which this occurs.

    1. Computational and Systems Biology
    2. Neuroscience
    Sara Ibañez, Nilapratim Sengupta ... Christina M Weaver
    Research Article

    Normal aging leads to myelin alterations in the rhesus monkey dorsolateral prefrontal cortex (dlPFC), which are positively correlated with degree of cognitive impairment. It is hypothesized that remyelination with shorter and thinner myelin sheaths partially compensates for myelin degradation, but computational modeling has not yet explored these two phenomena together systematically. Here, we used a two-pronged modeling approach to determine how age-related myelin changes affect a core cognitive function: spatial working memory. First, we built a multicompartment pyramidal neuron model fit to monkey dlPFC empirical data, with an axon including myelinated segments having paranodes, juxtaparanodes, internodes, and tight junctions. This model was used to quantify conduction velocity (CV) changes and action potential (AP) failures after demyelination and subsequent remyelination. Next, we incorporated the single neuron results into a spiking neural network model of working memory. While complete remyelination nearly recovered axonal transmission and network function to unperturbed levels, our models predict that biologically plausible levels of myelin dystrophy, if uncompensated by other factors, can account for substantial working memory impairment with aging. The present computational study unites empirical data from ultrastructure up to behavior during normal aging, and has broader implications for many demyelinating conditions, such as multiple sclerosis or schizophrenia.