Neuropilin-1 functions as a VEGFR2 co-receptor to guide developmental angiogenesis independent of ligand binding

  1. Maria V Gelfand
  2. Nellwyn Hagan
  3. Aleksandra Tata
  4. Won-Jong Oh
  5. Baptiste Lacoste
  6. Kyu-Tae Kang
  7. Justyna Kopycinska
  8. Joyce Bischoff
  9. Jia-Huai Wang
  10. Chenghua Gu  Is a corresponding author
  1. Harvard Medical School, United States
  2. Boston Children's Hospital, Harvard Medical School, United States
  3. Dana-Farber Cancer Institute, Harvard Medical School, United States

Abstract

During development, tissue repair, and tumor growth, most blood vessel networks are generated through angiogenesis. Vascular endothelial growth factor (VEGF) is a key regulator of this process and currently, both VEGF and its receptors, VEGFR1, VEGFR2, and Neuropilin1 (NRP1), are targeted in therapeutic strategies for vascular disease and cancer. NRP1 is essential for vascular morphogenesis, but how NRP1 functions to guide vascular development has not been completely elucidated. Here, we generated a mouse line harboring a point mutation in the endogenous Nrp1 locus that selectively abolishes VEGF-NRP1 binding (Nrp1VEGF-). Nrp1VEGF- mutants survive to adulthood with normal vasculature revealing that NRP1 functions independent of VEGF-NRP1 binding during developmental angiogenesis. Moreover, we found that Nrp1-deficient vessels have reduced VEGFR2 surface expression in vivo demonstrating that NRP1 regulates its co-receptor, VEGFR2. Given the resources invested in NRP1 targeted anti-angiogenesis therapies, our results will be integral for developing strategies to re-build vasculature in disease.

Article and author information

Author details

  1. Maria V Gelfand

    Harvard Medical School, Boston, United States
    Competing interests
    The authors declare that no competing interests exist.
  2. Nellwyn Hagan

    Harvard Medical School, Boston, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Aleksandra Tata

    Harvard Medical School, Boston, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Won-Jong Oh

    Harvard Medical School, Boston, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Baptiste Lacoste

    Harvard Medical School, Boston, United States
    Competing interests
    The authors declare that no competing interests exist.
  6. Kyu-Tae Kang

    Boston Children's Hospital, Harvard Medical School, Boston, United States
    Competing interests
    The authors declare that no competing interests exist.
  7. Justyna Kopycinska

    Harvard Medical School, Boston, United States
    Competing interests
    The authors declare that no competing interests exist.
  8. Joyce Bischoff

    Boston Children's Hospital, Harvard Medical School, Boston, United States
    Competing interests
    The authors declare that no competing interests exist.
  9. Jia-Huai Wang

    Dana-Farber Cancer Institute, Harvard Medical School, Boston, United States
    Competing interests
    The authors declare that no competing interests exist.
  10. Chenghua Gu

    Harvard Medical School, Boston, United States
    For correspondence
    Chenghua_Gu@hms.harvard.edu
    Competing interests
    The authors declare that no competing interests exist.

Reviewing Editor

  1. Jeremy Nathans, Howard Hughes Medical Institute, Johns Hopkins University School of Medicine, United States

Ethics

Animal experimentation: This study was performed in strict accordance with the recommendations in the Guide for the Care and Use of Laboratory Animals of the National Institutes of Health. All animals were handled according to approved institutional animal care and use committee (IACUC) protocols at Harvard Medical School (IACUC Study ID: IS00000045).

Version history

  1. Received: June 18, 2014
  2. Accepted: September 20, 2014
  3. Accepted Manuscript published: September 22, 2014 (version 1)
  4. Version of Record published: October 15, 2014 (version 2)

Copyright

© 2014, Gelfand et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 4,371
    views
  • 625
    downloads
  • 113
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Maria V Gelfand
  2. Nellwyn Hagan
  3. Aleksandra Tata
  4. Won-Jong Oh
  5. Baptiste Lacoste
  6. Kyu-Tae Kang
  7. Justyna Kopycinska
  8. Joyce Bischoff
  9. Jia-Huai Wang
  10. Chenghua Gu
(2014)
Neuropilin-1 functions as a VEGFR2 co-receptor to guide developmental angiogenesis independent of ligand binding
eLife 3:e03720.
https://doi.org/10.7554/eLife.03720

Share this article

https://doi.org/10.7554/eLife.03720

Further reading

    1. Cell Biology
    2. Developmental Biology
    Nicolas Loyer, Elizabeth KJ Hogg ... Jens Januschke
    Research Article Updated

    The generation of distinct cell fates during development depends on asymmetric cell division of progenitor cells. In the central and peripheral nervous system of Drosophila, progenitor cells respectively called neuroblasts or sensory organ precursors use PAR polarity during mitosis to control cell fate determination in their daughter cells. How polarity and the cell cycle are coupled, and how the cell cycle machinery regulates PAR protein function and cell fate determination is poorly understood. Here, we generate an analog sensitive allele of CDK1 and reveal that its partial inhibition weakens but does not abolish apical polarity in embryonic and larval neuroblasts and leads to defects in polarisation of fate determinants. We describe a novel in vivo phosphorylation of Bazooka, the Drosophila homolog of PAR-3, on Serine180, a consensus CDK phosphorylation site. In some tissular contexts, phosphorylation of Serine180 occurs in asymmetrically dividing cells but not in their symmetrically dividing neighbours. In neuroblasts, Serine180 phosphomutants disrupt the timing of basal polarisation. Serine180 phosphomutants also affect the specification and binary cell fate determination of sensory organ precursors as well as Baz localisation during their asymmetric cell divisions. Finally, we show that CDK1 phosphorylates Serine-S180 and an equivalent Serine on human PAR-3 in vitro.

    1. Developmental Biology
    2. Stem Cells and Regenerative Medicine
    Mayank Verma, Yoko Asakura ... Atsushi Asakura
    Research Article Updated

    Endothelial and skeletal muscle lineages arise from common embryonic progenitors. Despite their shared developmental origin, adult endothelial cells (ECs) and muscle stem cells (MuSCs; satellite cells) have been thought to possess distinct gene signatures and signaling pathways. Here, we shift this paradigm by uncovering how adult MuSC behavior is affected by the expression of a subset of EC transcripts. We used several computational analyses including single-cell RNA-seq (scRNA-seq) to show that MuSCs express low levels of canonical EC markers in mice. We demonstrate that MuSC survival is regulated by one such prototypic endothelial signaling pathway (VEGFA-FLT1). Using pharmacological and genetic gain- and loss-of-function studies, we identify the FLT1-AKT1 axis as the key effector underlying VEGFA-mediated regulation of MuSC survival. All together, our data support that the VEGFA-FLT1-AKT1 pathway promotes MuSC survival during muscle regeneration, and highlights how the minor expression of select transcripts is sufficient for affecting cell behavior.