Adiponectin is essential for lipid homeostasis and survival under insulin deficiency and promotes β-cell regeneration

  1. Risheng Ye
  2. William L Holland
  3. Ruth Gordillo
  4. Miao Wang
  5. Qiong A Wang
  6. Mengle Shao
  7. Thomas S Morley
  8. Rana K Gupta
  9. Andreas Stahl
  10. Philipp E Scherer  Is a corresponding author
  1. University of Texas Southwestern Medical Center, United States
  2. University of California Berkeley, United States

Abstract

As an adipokine in circulation, adiponectin has been extensively studied for its beneficial metabolic effects. While many important functions have been attributed to adiponectin under high-fat diet conditions, little is known about its essential role under regular chow. Employing a mouse model with inducible, acute β-cell ablation, we uncovered an essential role of adiponectin under insulinopenic conditions to maintain minimal lipid homeostasis. When insulin levels are marginal, adiponectin is critical for insulin signaling, endocytosis and lipid uptake in subcutaneous white adipose tissue. In the absence of both insulin and adiponectin, severe lipoatrophy and hyperlipidemia lead to lethality. In contrast, elevated adiponectin levels improve systemic lipid metabolism in the near absence of insulin. Moreover, adiponectin is sufficient to mitigate local lipotoxicity in pancreatic islets, and it promotes reconstitution of β-cell mass, eventually reinstating glycemic control. We uncovered an essential new role for adiponectin, with major implications for type 1 diabetes.

Article and author information

Author details

  1. Risheng Ye

    University of Texas Southwestern Medical Center, Dallas, United States
    Competing interests
    The authors declare that no competing interests exist.
  2. William L Holland

    University of Texas Southwestern Medical Center, Dallas, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Ruth Gordillo

    University of Texas Southwestern Medical Center, Dallas, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Miao Wang

    University of Texas Southwestern Medical Center, Dallas, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Qiong A Wang

    University of Texas Southwestern Medical Center, Dallas, United States
    Competing interests
    The authors declare that no competing interests exist.
  6. Mengle Shao

    University of Texas Southwestern Medical Center, Dallas, United States
    Competing interests
    The authors declare that no competing interests exist.
  7. Thomas S Morley

    University of Texas Southwestern Medical Center, Dallas, United States
    Competing interests
    The authors declare that no competing interests exist.
  8. Rana K Gupta

    University of Texas Southwestern Medical Center, Dallas, United States
    Competing interests
    The authors declare that no competing interests exist.
  9. Andreas Stahl

    University of California Berkeley, Berkeley, United States
    Competing interests
    The authors declare that no competing interests exist.
  10. Philipp E Scherer

    University of Texas Southwestern Medical Center, Dallas, United States
    For correspondence
    philipp.scherer@utsouthwestern.edu
    Competing interests
    The authors declare that no competing interests exist.

Ethics

Animal experimentation: All protocols for mouse use and euthanasia were reviewed and approved by the Institutional Animal Care and Use Committee of the University of Texas Southwestern Medical Center (#2010-0006).

Copyright

© 2014, Ye et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 3,524
    views
  • 505
    downloads
  • 72
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Risheng Ye
  2. William L Holland
  3. Ruth Gordillo
  4. Miao Wang
  5. Qiong A Wang
  6. Mengle Shao
  7. Thomas S Morley
  8. Rana K Gupta
  9. Andreas Stahl
  10. Philipp E Scherer
(2014)
Adiponectin is essential for lipid homeostasis and survival under insulin deficiency and promotes β-cell regeneration
eLife 3:e03851.
https://doi.org/10.7554/eLife.03851

Share this article

https://doi.org/10.7554/eLife.03851

Further reading

    1. Cell Biology
    2. Developmental Biology
    Deepak Adhikari, John Carroll
    Insight

    The formation of large endolysosomal structures in unfertilized eggs ensures that lysosomes remain dormant before fertilization, and then shift into clean-up mode after the egg-to-embryo transition.

    1. Cell Biology
    2. Developmental Biology
    Filip Knop, Apolena Zounarová ... Marie Macůrková
    Research Article Updated

    During Caenorhabditis elegans development, multiple cells migrate long distances or extend processes to reach their final position and/or attain proper shape. The Wnt signalling pathway stands out as one of the major coordinators of cell migration or cell outgrowth along the anterior-posterior body axis. The outcome of Wnt signalling is fine-tuned by various mechanisms including endocytosis. In this study, we show that SEL-5, the C. elegans orthologue of mammalian AP2-associated kinase AAK1, acts together with the retromer complex as a positive regulator of EGL-20/Wnt signalling during the migration of QL neuroblast daughter cells. At the same time, SEL-5 in cooperation with the retromer complex is also required during excretory canal cell outgrowth. Importantly, SEL-5 kinase activity is not required for its role in neuronal migration or excretory cell outgrowth, and neither of these processes is dependent on DPY-23/AP2M1 phosphorylation. We further establish that the Wnt proteins CWN-1 and CWN-2, together with the Frizzled receptor CFZ-2, positively regulate excretory cell outgrowth, while LIN-44/Wnt and LIN-17/Frizzled together generate a stop signal inhibiting its extension.