1. Cell Biology
Download icon

Adiponectin is essential for lipid homeostasis and survival under insulin deficiency and promotes β-cell regeneration

  1. Risheng Ye
  2. William L Holland
  3. Ruth Gordillo
  4. Miao Wang
  5. Qiong A Wang
  6. Mengle Shao
  7. Thomas S Morley
  8. Rana K Gupta
  9. Andreas Stahl
  10. Philipp E Scherer  Is a corresponding author
  1. University of Texas Southwestern Medical Center, United States
  2. University of California Berkeley, United States
Research Article
  • Cited 47
  • Views 3,261
  • Annotations
Cite this article as: eLife 2014;3:e03851 doi: 10.7554/eLife.03851

Abstract

As an adipokine in circulation, adiponectin has been extensively studied for its beneficial metabolic effects. While many important functions have been attributed to adiponectin under high-fat diet conditions, little is known about its essential role under regular chow. Employing a mouse model with inducible, acute β-cell ablation, we uncovered an essential role of adiponectin under insulinopenic conditions to maintain minimal lipid homeostasis. When insulin levels are marginal, adiponectin is critical for insulin signaling, endocytosis and lipid uptake in subcutaneous white adipose tissue. In the absence of both insulin and adiponectin, severe lipoatrophy and hyperlipidemia lead to lethality. In contrast, elevated adiponectin levels improve systemic lipid metabolism in the near absence of insulin. Moreover, adiponectin is sufficient to mitigate local lipotoxicity in pancreatic islets, and it promotes reconstitution of β-cell mass, eventually reinstating glycemic control. We uncovered an essential new role for adiponectin, with major implications for type 1 diabetes.

Article and author information

Author details

  1. Risheng Ye

    University of Texas Southwestern Medical Center, Dallas, United States
    Competing interests
    The authors declare that no competing interests exist.
  2. William L Holland

    University of Texas Southwestern Medical Center, Dallas, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Ruth Gordillo

    University of Texas Southwestern Medical Center, Dallas, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Miao Wang

    University of Texas Southwestern Medical Center, Dallas, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Qiong A Wang

    University of Texas Southwestern Medical Center, Dallas, United States
    Competing interests
    The authors declare that no competing interests exist.
  6. Mengle Shao

    University of Texas Southwestern Medical Center, Dallas, United States
    Competing interests
    The authors declare that no competing interests exist.
  7. Thomas S Morley

    University of Texas Southwestern Medical Center, Dallas, United States
    Competing interests
    The authors declare that no competing interests exist.
  8. Rana K Gupta

    University of Texas Southwestern Medical Center, Dallas, United States
    Competing interests
    The authors declare that no competing interests exist.
  9. Andreas Stahl

    University of California Berkeley, Berkeley, United States
    Competing interests
    The authors declare that no competing interests exist.
  10. Philipp E Scherer

    University of Texas Southwestern Medical Center, Dallas, United States
    For correspondence
    philipp.scherer@utsouthwestern.edu
    Competing interests
    The authors declare that no competing interests exist.

Ethics

Animal experimentation: All protocols for mouse use and euthanasia were reviewed and approved by the Institutional Animal Care and Use Committee of the University of Texas Southwestern Medical Center (#2010-0006).

Reviewing Editor

  1. Peter Tontonoz, University of California, Los Angeles, United States

Publication history

  1. Received: July 3, 2014
  2. Accepted: October 15, 2014
  3. Accepted Manuscript published: October 23, 2014 (version 1)
  4. Version of Record published: November 12, 2014 (version 2)

Copyright

© 2014, Ye et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 3,261
    Page views
  • 445
    Downloads
  • 47
    Citations

Article citation count generated by polling the highest count across the following sources: Scopus, PubMed Central, Crossref.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Download citations (links to download the citations from this article in formats compatible with various reference manager tools)

Open citations (links to open the citations from this article in various online reference manager services)

Further reading

    1. Cell Biology
    2. Neuroscience
    Friederike Elisabeth Kohrs et al.
    Tools and Resources

    Rab GTPases are molecular switches that regulate membrane trafficking in all cells. Neurons have particular demands on membrane trafficking and express numerous Rab GTPases of unknown function. Here we report the generation and characterization of molecularly defined null mutants for all 26 rab genes in Drosophila. In flies, all rab genes are expressed in the nervous system where at least half exhibit particularly high levels compared to other tissues. Surprisingly, loss of any of these 13 nervous system-enriched Rabs yielded viable and fertile flies without obvious morphological defects. However, all 13 mutants differentially affected development when challenged with different temperatures, or neuronal function when challenged with continuous stimulation. We identified a synaptic maintenance defect following continuous stimulation for six mutants, including an autophagy-independent role of rab26. The complete mutant collection generated in this study provides a basis for further comprehensive studies of Rab GTPases during development and function in vivo.

    1. Cell Biology
    Luca Minati et al.
    Tools and Resources Updated

    A vast portion of the mammalian genome is transcribed as long non-coding RNAs (lncRNAs) acting in the cytoplasm with largely unknown functions. Surprisingly, lncRNAs have been shown to interact with ribosomes, encode peptides, or act as ribosome sponges. These functions still remain mostly undetected and understudied owing to the lack of efficient tools for genome-wide simultaneous identification of ribosome-associated and peptide-producing lncRNAs. Here, we present AHA-mediated RIBOsome isolation (AHARIBO), a method for the detection of lncRNAs either untranslated, but associated with ribosomes, or encoding small peptides. Using AHARIBO in mouse embryonic stem cells during neuronal differentiation, we isolated ribosome-protected RNA fragments, translated RNAs, and corresponding de novo synthesized peptides. Besides identifying mRNAs under active translation and associated ribosomes, we found and distinguished lncRNAs acting as ribosome sponges or encoding micropeptides, laying the ground for a better functional understanding of hundreds of lncRNAs.