The glucuronyltransferase B4GAT1 is required for initiation of LARGE-mediated α-dystroglycan functional glycosylation

  1. Tobias Willer
  2. Kei-ichiro Inamori
  3. David Venzke
  4. Corinne Harvey
  5. Greg Morgensen
  6. Yuji Hara
  7. Daniel Beltrán Valero de Bernabé
  8. Liping Yu
  9. Kevin M Wright
  10. Kevin P Campbell  Is a corresponding author
  1. Howard Hughes Medical Institute, University of Iowa, Carver College of Medicine, United States
  2. Tohoku Pharmaceutical University, Japan
  3. Graduate School of Engineering, Kyoto University, Japan
  4. University of Iowa, Carver College of Medicine, United States
  5. Oregon Health and Science University, United States

Abstract

Dystroglycan is a cell membrane receptor that organizes the basement membrane by binding ligands in the extracellular matrix. Proper glycosylation of the α-dystroglycan (α-DG) subunit is essential for these activities, and lack thereof results in neuromuscular disease. Currently, neither the glycan synthesis pathway nor the roles of many known or putative glycosyltransferases that are essential for this process are well understood. Here we show that FKRP, FKTN, TMEM5 and B4GAT1 (formerly known as B3GNT1) localize to the Golgi and contribute to the O-mannosyl post-phosphorylation modification of α-DG. Moreover, we assigned B4GAT1 a function as a xylose β1,4-glucuronyltransferase. Nuclear magnetic resonance studies confirmed that a glucuronic acid β1,4-xylose disaccharide synthesized by B4GAT1 acts as an acceptor primer that can be elongated by LARGE with the ligand-binding heteropolysaccharide. Our findings greatly broaden the understanding of α-DG glycosylation and provide mechanistic insight into why mutations in B4GAT1 disrupt dystroglycan function and cause disease.

Article and author information

Author details

  1. Tobias Willer

    Howard Hughes Medical Institute, University of Iowa, Carver College of Medicine, Iowa City, United States
    Competing interests
    The authors declare that no competing interests exist.
  2. Kei-ichiro Inamori

    Tohoku Pharmaceutical University, Komatsushima, Japan
    Competing interests
    The authors declare that no competing interests exist.
  3. David Venzke

    Howard Hughes Medical Institute, University of Iowa, Carver College of Medicine, Iowa City, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Corinne Harvey

    Howard Hughes Medical Institute, University of Iowa, Carver College of Medicine, Iowa City, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Greg Morgensen

    Howard Hughes Medical Institute, University of Iowa, Carver College of Medicine, Iowa City, United States
    Competing interests
    The authors declare that no competing interests exist.
  6. Yuji Hara

    Graduate School of Engineering, Kyoto University, Kyoto, Japan
    Competing interests
    The authors declare that no competing interests exist.
  7. Daniel Beltrán Valero de Bernabé

    Howard Hughes Medical Institute, University of Iowa, Carver College of Medicine, Iowa City, United States
    Competing interests
    The authors declare that no competing interests exist.
  8. Liping Yu

    University of Iowa, Carver College of Medicine, Iowa City, United States
    Competing interests
    The authors declare that no competing interests exist.
  9. Kevin M Wright

    Oregon Health and Science University, Portland, United States
    Competing interests
    The authors declare that no competing interests exist.
  10. Kevin P Campbell

    Howard Hughes Medical Institute, University of Iowa, Carver College of Medicine, Iowa City, United States
    For correspondence
    kevin-campbell@uiowa.edu
    Competing interests
    The authors declare that no competing interests exist.

Ethics

Animal experimentation: Animal care, ethical usage and procedures were approved and performed in accordance with the standards set forth by the National Institutes of Health and the Animal Care Use and Review Committee at the University of Iowa (protocol #4081122). At the University of Iowa all mice are socially housed (unless single housing is required) under specific pathogen-free conditions in an AAALAC accredited animal facility. Housing conditions are as specified in the Guide for the Care and Use of Laboratory Animals (NRC). Mice are housed on Thoren brand, HEPA filtered ventilated racks, in solid bottom cages with mixed paper bedding. A standard 12/12-h light/dark cycle was used. Standard rodent chow (or special diet if required) and water is available ad libitum.

Copyright

© 2014, Willer et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,647
    views
  • 407
    downloads
  • 94
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Tobias Willer
  2. Kei-ichiro Inamori
  3. David Venzke
  4. Corinne Harvey
  5. Greg Morgensen
  6. Yuji Hara
  7. Daniel Beltrán Valero de Bernabé
  8. Liping Yu
  9. Kevin M Wright
  10. Kevin P Campbell
(2014)
The glucuronyltransferase B4GAT1 is required for initiation of LARGE-mediated α-dystroglycan functional glycosylation
eLife 3:e03941.
https://doi.org/10.7554/eLife.03941

Share this article

https://doi.org/10.7554/eLife.03941

Further reading

    1. Biochemistry and Chemical Biology
    Nelson García-Vázquez, Tania J González-Robles ... Michele Pagano
    Research Article

    In healthy cells, cyclin D1 is expressed during the G1 phase of the cell cycle, where it activates CDK4 and CDK6. Its dysregulation is a well-established oncogenic driver in numerous human cancers. The cancer-related function of cyclin D1 has been primarily studied by focusing on the phosphorylation of the retinoblastoma (RB) gene product. Here, using an integrative approach combining bioinformatic analyses and biochemical experiments, we show that GTSE1 (G-Two and S phases expressed protein 1), a protein positively regulating cell cycle progression, is a previously unrecognized substrate of cyclin D1–CDK4/6 in tumor cells overexpressing cyclin D1 during G1 and subsequent phases. The phosphorylation of GTSE1 mediated by cyclin D1–CDK4/6 inhibits GTSE1 degradation, leading to high levels of GTSE1 across all cell cycle phases. Functionally, the phosphorylation of GTSE1 promotes cellular proliferation and is associated with poor prognosis within a pan-cancer cohort. Our findings provide insights into cyclin D1’s role in cell cycle control and oncogenesis beyond RB phosphorylation.

    1. Biochemistry and Chemical Biology
    2. Microbiology and Infectious Disease
    Mai Nguyen, Elda Bauda ... Cecile Morlot
    Research Article

    Teichoic acids (TA) are linear phospho-saccharidic polymers and important constituents of the cell envelope of Gram-positive bacteria, either bound to the peptidoglycan as wall teichoic acids (WTA) or to the membrane as lipoteichoic acids (LTA). The composition of TA varies greatly but the presence of both WTA and LTA is highly conserved, hinting at an underlying fundamental function that is distinct from their specific roles in diverse organisms. We report the observation of a periplasmic space in Streptococcus pneumoniae by cryo-electron microscopy of vitreous sections. The thickness and appearance of this region change upon deletion of genes involved in the attachment of TA, supporting their role in the maintenance of a periplasmic space in Gram-positive bacteria as a possible universal function. Consequences of these mutations were further examined by super-resolved microscopy, following metabolic labeling and fluorophore coupling by click chemistry. This novel labeling method also enabled in-gel analysis of cell fractions. With this approach, we were able to titrate the actual amount of TA per cell and to determine the ratio of WTA to LTA. In addition, we followed the change of TA length during growth phases, and discovered that a mutant devoid of LTA accumulates the membrane-bound polymerized TA precursor.