A reversible non-membrane bound stress assembly that confers cell viability by preserving ERES components during amino-acid starvation

  1. Margarita Zacharogianni
  2. Angelica Aguilera Gomez
  3. Tineke Veenendaal
  4. Jan Smout
  5. Catherine Rabouille  Is a corresponding author
  1. Royal Netherlands Academy of Arts and Sciences, Netherlands
  2. University Medical Center Utrecht, Netherlands

Abstract

Nutritional restriction leads to protein translation attenuation that results in the storage and degradation of free mRNAs in cytoplasmic assemblies. Here, we show in Drosophila S2 cells that amino-acid starvation also leads to the inhibition of another major anabolic pathway, the protein transport through the secretory pathway, and to the formation of a novel reversible non-membrane bound stress assembly, the Sec body that incorporates components of the ER exit sites. Sec body formation does not depend on membrane traffic in the early secretory pathway, yet requires both Sec23 and Sec24AB. Sec bodies have liquid droplet-like properties and they act as a protective reservoir for ERES components to rebuild a functional secretory pathway after re-addition of amino-acids acting as a part of a survival mechanism. Taken together, we propose that the formation of these structures is a novel stress response mechanism to provide cell viability during and after nutrient stress.

Article and author information

Author details

  1. Margarita Zacharogianni

    Royal Netherlands Academy of Arts and Sciences, Utrecht, Netherlands
    Competing interests
    The authors declare that no competing interests exist.
  2. Angelica Aguilera Gomez

    Royal Netherlands Academy of Arts and Sciences, Utrecht, Netherlands
    Competing interests
    The authors declare that no competing interests exist.
  3. Tineke Veenendaal

    University Medical Center Utrecht, Utrecht, Netherlands
    Competing interests
    The authors declare that no competing interests exist.
  4. Jan Smout

    Royal Netherlands Academy of Arts and Sciences, Utrecht, Netherlands
    Competing interests
    The authors declare that no competing interests exist.
  5. Catherine Rabouille

    Royal Netherlands Academy of Arts and Sciences, Utrecht, Netherlands
    For correspondence
    c.rabouille@hubrecht.eu
    Competing interests
    The authors declare that no competing interests exist.

Reviewing Editor

  1. Jodi Nunnari, University of California, Davis, United States

Version history

  1. Received: July 23, 2014
  2. Accepted: November 10, 2014
  3. Accepted Manuscript published: November 11, 2014 (version 1)
  4. Version of Record published: December 4, 2014 (version 2)
  5. Version of Record updated: November 11, 2016 (version 3)

Copyright

© 2014, Zacharogianni et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 3,972
    Page views
  • 598
    Downloads
  • 62
    Citations

Article citation count generated by polling the highest count across the following sources: Crossref, Scopus, PubMed Central.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Margarita Zacharogianni
  2. Angelica Aguilera Gomez
  3. Tineke Veenendaal
  4. Jan Smout
  5. Catherine Rabouille
(2014)
A reversible non-membrane bound stress assembly that confers cell viability by preserving ERES components during amino-acid starvation
eLife 3:e04132.
https://doi.org/10.7554/eLife.04132

Share this article

https://doi.org/10.7554/eLife.04132