1. Cell Biology
Download icon

A reversible non-membrane bound stress assembly that confers cell viability by preserving ERES components during amino-acid starvation

  1. Margarita Zacharogianni
  2. Angelica Aguilera Gomez
  3. Tineke Veenendaal
  4. Jan Smout
  5. Catherine Rabouille  Is a corresponding author
  1. Royal Netherlands Academy of Arts and Sciences, Netherlands
  2. University Medical Center Utrecht, Netherlands
Research Article
  • Cited 30
  • Views 3,803
  • Annotations
Cite this article as: eLife 2014;3:e04132 doi: 10.7554/eLife.04132

Abstract

Nutritional restriction leads to protein translation attenuation that results in the storage and degradation of free mRNAs in cytoplasmic assemblies. Here, we show in Drosophila S2 cells that amino-acid starvation also leads to the inhibition of another major anabolic pathway, the protein transport through the secretory pathway, and to the formation of a novel reversible non-membrane bound stress assembly, the Sec body that incorporates components of the ER exit sites. Sec body formation does not depend on membrane traffic in the early secretory pathway, yet requires both Sec23 and Sec24AB. Sec bodies have liquid droplet-like properties and they act as a protective reservoir for ERES components to rebuild a functional secretory pathway after re-addition of amino-acids acting as a part of a survival mechanism. Taken together, we propose that the formation of these structures is a novel stress response mechanism to provide cell viability during and after nutrient stress.

Article and author information

Author details

  1. Margarita Zacharogianni

    Royal Netherlands Academy of Arts and Sciences, Utrecht, Netherlands
    Competing interests
    The authors declare that no competing interests exist.
  2. Angelica Aguilera Gomez

    Royal Netherlands Academy of Arts and Sciences, Utrecht, Netherlands
    Competing interests
    The authors declare that no competing interests exist.
  3. Tineke Veenendaal

    University Medical Center Utrecht, Utrecht, Netherlands
    Competing interests
    The authors declare that no competing interests exist.
  4. Jan Smout

    Royal Netherlands Academy of Arts and Sciences, Utrecht, Netherlands
    Competing interests
    The authors declare that no competing interests exist.
  5. Catherine Rabouille

    Royal Netherlands Academy of Arts and Sciences, Utrecht, Netherlands
    For correspondence
    c.rabouille@hubrecht.eu
    Competing interests
    The authors declare that no competing interests exist.

Reviewing Editor

  1. Jodi Nunnari, University of California, Davis, United States

Publication history

  1. Received: July 23, 2014
  2. Accepted: November 10, 2014
  3. Accepted Manuscript published: November 11, 2014 (version 1)
  4. Version of Record published: December 4, 2014 (version 2)
  5. Version of Record updated: November 11, 2016 (version 3)

Copyright

© 2014, Zacharogianni et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 3,803
    Page views
  • 507
    Downloads
  • 30
    Citations

Article citation count generated by polling the highest count across the following sources: Crossref, Scopus, PubMed Central.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Download citations (links to download the citations from this article in formats compatible with various reference manager tools)

Open citations (links to open the citations from this article in various online reference manager services)

Further reading

    1. Cell Biology
    2. Neuroscience
    Georgina Kontou et al.
    Research Article Updated

    The spatiotemporal distribution of mitochondria is crucial for precise ATP provision and calcium buffering required to support neuronal signaling. Fast-spiking GABAergic interneurons expressing parvalbumin (PV+) have a high mitochondrial content reflecting their large energy utilization. The importance for correct trafficking and precise mitochondrial positioning remains poorly elucidated in inhibitory neurons. Miro1 is a Ca²+-sensing adaptor protein that links mitochondria to the trafficking apparatus, for their microtubule-dependent transport along axons and dendrites, in order to meet the metabolic and Ca2+-buffering requirements of the cell. Here, we explore the role of Miro1 in PV+ interneurons and how changes in mitochondrial trafficking could alter network activity in the mouse brain. By employing live and fixed imaging, we found that the impairments in Miro1-directed trafficking in PV+ interneurons altered their mitochondrial distribution and axonal arborization, while PV+ interneuron-mediated inhibition remained intact. These changes were accompanied by an increase in the ex vivo hippocampal γ-oscillation (30–80 Hz) frequency and promoted anxiolysis. Our findings show that precise regulation of mitochondrial dynamics in PV+ interneurons is crucial for proper neuronal signaling and network synchronization.

    1. Cell Biology
    2. Neuroscience
    Kirsty J McMillan et al.
    Research Article Updated

    The endosome-associated cargo adaptor sorting nexin-27 (SNX27) is linked to various neuropathologies through sorting of integral proteins to the synaptic surface, most notably AMPA receptors. To provide a broader view of SNX27-associated pathologies, we performed proteomics in rat primary neurons to identify SNX27-dependent cargoes, and identified proteins linked to excitotoxicity, epilepsy, intellectual disabilities, and working memory deficits. Focusing on the synaptic adhesion molecule LRFN2, we established that SNX27 binds to LRFN2 and regulates its endosomal sorting. Furthermore, LRFN2 associates with AMPA receptors and knockdown of LRFN2 results in decreased surface AMPA receptor expression, reduced synaptic activity, and attenuated hippocampal long-term potentiation. Overall, our study provides an additional mechanism by which SNX27 can control AMPA receptor-mediated synaptic transmission and plasticity indirectly through the sorting of LRFN2 and offers molecular insight into the perturbed function of SNX27 and LRFN2 in a range of neurological conditions.