Effective use of a horizontally-transferred pathway for dichloromethane catabolism requires post-transfer refinement

  1. Joshua K Michener
  2. Aline A Camargo Neves
  3. Stéphane Vuileumier
  4. Françoise Bringel
  5. Christopher J Marx  Is a corresponding author
  1. Harvard University, United States
  2. Harvard University, Cambridge, United States
  3. Université de Strasbourg, France

Abstract

When microbes acquire new abilities through horizontal gene transfer, the genes and pathways must function under conditions with which they did not coevolve. If newly-acquired genes burden the host, effective use will depend on further evolutionary refinement of the recombinant strain. We used laboratory evolution to recapitulate this process of transfer and refinement, demonstrating that effective use of an introduced dichloromethane degradation pathway required one of several mutations to the bacterial host that are predicted to increase chloride efflux. We then used this knowledge to identify parallel, beneficial mutations that independently evolved in two natural dichloromethane-degrading strains. Finally, we constructed a synthetic mobile genetic element carrying both the degradation pathway and a chloride exporter, which preempted the adaptive process and directly enabled effective dichloromethane degradation across diverse Methylobacterium environmental isolates. Our results demonstrate the importance of post-transfer refinement in horizontal gene transfer, with potential applications in bioremediation and synthetic biology.

Article and author information

Author details

  1. Joshua K Michener

    Harvard University, Cambridge, United States
    Competing interests
    The authors declare that no competing interests exist.
  2. Aline A Camargo Neves

    Harvard University, Cambridge, Cambridge, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Stéphane Vuileumier

    Université de Strasbourg, Strasbourg, France
    Competing interests
    The authors declare that no competing interests exist.
  4. Françoise Bringel

    Université de Strasbourg, Strasbourg, France
    Competing interests
    The authors declare that no competing interests exist.
  5. Christopher J Marx

    Harvard University, Cambridge, United States
    For correspondence
    cmarx@uidaho.edu
    Competing interests
    The authors declare that no competing interests exist.

Copyright

© 2014, Michener et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,306
    views
  • 170
    downloads
  • 35
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Joshua K Michener
  2. Aline A Camargo Neves
  3. Stéphane Vuileumier
  4. Françoise Bringel
  5. Christopher J Marx
(2014)
Effective use of a horizontally-transferred pathway for dichloromethane catabolism requires post-transfer refinement
eLife 3:e04279.
https://doi.org/10.7554/eLife.04279

Share this article

https://doi.org/10.7554/eLife.04279

Further reading

    1. Microbiology and Infectious Disease
    Ziyu Wen, Pingchao Li ... Caijun Sun
    Research Article

    The persistence of latent viral reservoirs remains the major obstacle to eradicating human immunodeficiency virus (HIV). We herein found that ICP34.5 can act as an antagonistic factor for the reactivation of HIV latency by herpes simplex virus type I (HSV-1), and thus recombinant HSV-1 with ICP34.5 deletion could more effectively reactivate HIV latency than its wild-type counterpart. Mechanistically, HSV-ΔICP34.5 promoted the phosphorylation of HSF1 by decreasing the recruitment of protein phosphatase 1 (PP1α), thus effectively binding to the HIV LTR to reactivate the latent reservoirs. In addition, HSV-ΔICP34.5 enhanced the phosphorylation of IKKα/β through the degradation of IκBα, leading to p65 accumulation in the nucleus to elicit NF-κB pathway-dependent reactivation of HIV latency. Then, we constructed the recombinant HSV-ΔICP34.5 expressing simian immunodeficiency virus (SIV) env, gag, or the fusion antigen sPD1-SIVgag as a therapeutic vaccine, aiming to achieve a functional cure by simultaneously reactivating viral latency and eliciting antigen-specific immune responses. Results showed that these constructs effectively elicited SIV-specific immune responses, reactivated SIV latency, and delayed viral rebound after the interruption of antiretroviral therapy (ART) in chronically SIV-infected rhesus macaques. Collectively, these findings provide insights into the rational design of HSV-vectored therapeutic strategies for pursuing an HIV functional cure.

    1. Biochemistry and Chemical Biology
    2. Microbiology and Infectious Disease
    Mai Nguyen, Elda Bauda ... Cecile Morlot
    Research Article

    Teichoic acids (TA) are linear phospho-saccharidic polymers and important constituents of the cell envelope of Gram-positive bacteria, either bound to the peptidoglycan as wall teichoic acids (WTA) or to the membrane as lipoteichoic acids (LTA). The composition of TA varies greatly but the presence of both WTA and LTA is highly conserved, hinting at an underlying fundamental function that is distinct from their specific roles in diverse organisms. We report the observation of a periplasmic space in Streptococcus pneumoniae by cryo-electron microscopy of vitreous sections. The thickness and appearance of this region change upon deletion of genes involved in the attachment of TA, supporting their role in the maintenance of a periplasmic space in Gram-positive bacteria as a possible universal function. Consequences of these mutations were further examined by super-resolved microscopy, following metabolic labeling and fluorophore coupling by click chemistry. This novel labeling method also enabled in-gel analysis of cell fractions. With this approach, we were able to titrate the actual amount of TA per cell and to determine the ratio of WTA to LTA. In addition, we followed the change of TA length during growth phases, and discovered that a mutant devoid of LTA accumulates the membrane-bound polymerized TA precursor.