Lymph node stromal cells constrain immunity via MHC class II self-antigen presentation

  1. Antonio P Baptista
  2. Ramon Roozendaal
  3. Rogier M Reijmers
  4. Jasper J Koning
  5. Wendy W Unger
  6. Mascha Greuter
  7. Eelco D Keuning
  8. Rosalie Molenaar
  9. Gera Goverse
  10. Marlous M S Sneeboer
  11. Joke M M den Haan
  12. Marianne Boes
  13. Reina E Mebius  Is a corresponding author
  1. Vrije Universiteit Medical Center, Netherlands
  2. Janssen Center of Excellence for Immunoprophylaxis, Netherlands
  3. University Medical Center Utrecht, Netherlands

Abstract

Non-hematopoietic lymph node stromal cells shape immunity by inducing MHC-I-dependent deletion of self-reactive CD8+ T cells and MHC-II-dependent anergy of CD4+ T cells. Here, we show that MHC-II expression on lymph node stromal cells is additionally required for homeostatic maintenance of regulatory T cells (Tregs) and maintenance of immune quiescence. In the absence of MHC-II expression in lymph node transplants, i.e. on lymph node stromal cells, CD4+ as well as CD8+ T cells became activated, ultimately resulting in transplant rejection. MHC-II self-antigen presentation by lymph node stromal cells allowed the non-proliferative maintenance of antigen-specific Tregs and constrained antigen-specific immunity. Altogether, our results reveal a novel mechanism by which lymph node stromal cells regulate peripheral immunity.

Article and author information

Author details

  1. Antonio P Baptista

    Vrije Universiteit Medical Center, Amsterdam, Netherlands
    Competing interests
    The authors declare that no competing interests exist.
  2. Ramon Roozendaal

    Janssen Center of Excellence for Immunoprophylaxis, Leiden, Netherlands
    Competing interests
    The authors declare that no competing interests exist.
  3. Rogier M Reijmers

    Vrije Universiteit Medical Center, Amsterdam, Netherlands
    Competing interests
    The authors declare that no competing interests exist.
  4. Jasper J Koning

    Vrije Universiteit Medical Center, Amsterdam, Netherlands
    Competing interests
    The authors declare that no competing interests exist.
  5. Wendy W Unger

    Vrije Universiteit Medical Center, Amsterdam, Netherlands
    Competing interests
    The authors declare that no competing interests exist.
  6. Mascha Greuter

    Vrije Universiteit Medical Center, Amsterdam, Netherlands
    Competing interests
    The authors declare that no competing interests exist.
  7. Eelco D Keuning

    Vrije Universiteit Medical Center, Amsterdam, Netherlands
    Competing interests
    The authors declare that no competing interests exist.
  8. Rosalie Molenaar

    Vrije Universiteit Medical Center, Amsterdam, Netherlands
    Competing interests
    The authors declare that no competing interests exist.
  9. Gera Goverse

    Vrije Universiteit Medical Center, Amsterdam, Netherlands
    Competing interests
    The authors declare that no competing interests exist.
  10. Marlous M S Sneeboer

    Vrije Universiteit Medical Center, Amsterdam, Netherlands
    Competing interests
    The authors declare that no competing interests exist.
  11. Joke M M den Haan

    Vrije Universiteit Medical Center, Amsterdam, Netherlands
    Competing interests
    The authors declare that no competing interests exist.
  12. Marianne Boes

    University Medical Center Utrecht, Utrecht, Netherlands
    Competing interests
    The authors declare that no competing interests exist.
  13. Reina E Mebius

    Vrije Universiteit Medical Center, Amsterdam, Netherlands
    For correspondence
    r.mebius@vumc.nl
    Competing interests
    The authors declare that no competing interests exist.

Ethics

Animal experimentation: All animal experiments were reviewed and approved by the Vrije University Scientific and Ethics Committees (protocols MCB09-35, MCB10-01 and MCB13-06). All surgery was performed under xylazine and ketamine anesthesia.

Copyright

© 2014, Baptista et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 3,555
    views
  • 481
    downloads
  • 83
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Antonio P Baptista
  2. Ramon Roozendaal
  3. Rogier M Reijmers
  4. Jasper J Koning
  5. Wendy W Unger
  6. Mascha Greuter
  7. Eelco D Keuning
  8. Rosalie Molenaar
  9. Gera Goverse
  10. Marlous M S Sneeboer
  11. Joke M M den Haan
  12. Marianne Boes
  13. Reina E Mebius
(2014)
Lymph node stromal cells constrain immunity via MHC class II self-antigen presentation
eLife 3:e04433.
https://doi.org/10.7554/eLife.04433

Share this article

https://doi.org/10.7554/eLife.04433

Further reading

    1. Immunology and Inflammation
    2. Microbiology and Infectious Disease
    Xu Zheng, Shi Yu ... Guangxun Meng
    Research Article

    Innate immune responses triggered by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection play pivotal roles in the pathogenesis of COVID-19, while host factors including proinflammatory cytokines are critical for viral containment. By utilizing quantitative and qualitative models, we discovered that soluble factors secreted by human monocytes potently inhibit SARS-CoV-2-induced cell-cell fusion in viral-infected cells. Through cytokine screening, we identified that interleukin-1β (IL-1β), a key mediator of inflammation, inhibits syncytia formation mediated by various SARS-CoV-2 strains. Mechanistically, IL-1β activates RhoA/ROCK signaling through a non-canonical IL-1 receptor-dependent pathway, which drives the enrichment of actin bundles at the cell-cell junctions, thus prevents syncytia formation. Notably, in vivo infection experiments in mice confirmed that IL-1β significantly restricted SARS-CoV-2 spread in the lung epithelium. Together, by revealing the function and underlying mechanism of IL-1β on SARS-CoV-2-induced cell-cell fusion, our study highlights an unprecedented antiviral function for cytokines during viral infection.

    1. Immunology and Inflammation
    Ning Song, Hang Gao ... Wenlong Zhang
    Research Article

    Gout is a prevalent form of inflammatory arthritis that occurs due to high levels of uric acid in the blood leading to the formation of urate crystals in and around the joints, particularly affecting the elderly. Recent research has provided evidence of distinct differences in the gut microbiota of patients with gout and hyperuricemia compared to healthy individuals. However, the link between gut microbiota and age-related gout remained underexplored. Our study found that gut microbiota plays a crucial role in determining susceptibility to age-related gout. Specifically, we observed that age-related gut microbiota regulated the activation of the NLRP3 inflammasome pathway and modulated uric acid metabolism. More scrutiny highlighted the positive impact of ‘younger’ microbiota on the gut microbiota structure of old or aged mice, enhancing butanoate metabolism and butyric acid content. Experimentation with butyrate supplementation indicated that butyric acid exerts a dual effect, inhibiting inflammation in acute gout and reducing serum uric acid levels. These insights emphasize the potential of gut microbiome rejuvenation in mitigating senile gout, unraveling the intricate dynamics between microbiota, aging, and gout. It potentially serves as a therapeutic target for senile gout-related conditions.