Amygdala neural activity reflects spatial attention towards stimuli promising reward or threatening punishment

  1. Christopher J Peck
  2. C Daniel Salzman  Is a corresponding author
  1. Columbia University, United States

Abstract

Humans and other animals routinely identify and attend to sensory stimuli so as to rapidly acquire rewards or avoid aversive experiences. Emotional arousal, a process mediated by the amygdala, can enhance attention to stimuli in a non-spatial manner. However, amygdala neural activity was recently shown to encode spatial information about reward-predictive stimuli, and to correlate with spatial attention allocation. If representing the motivational significance of sensory stimuli within a spatial framework reflects a general principle of amygdala function, then spatially selective neural responses should also be elicited by sensory stimuli threatening aversive events. Recordings from amygdala neurons were therefore obtained while monkeys directed spatial attention towards stimuli promising reward or threatening punishment. Neural responses encoded spatial information similarly for stimuli associated with both valences of reinforcement, and responses reflected spatial attention allocation. The amygdala therefore may act to enhance spatial attention to sensory stimuli associated with rewarding or aversive experiences.

Article and author information

Author details

  1. Christopher J Peck

    Columbia University, New York, United States
    Competing interests
    The authors declare that no competing interests exist.
  2. C Daniel Salzman

    Columbia University, New York, United States
    For correspondence
    cds2005@columbia.edu
    Competing interests
    The authors declare that no competing interests exist.

Reviewing Editor

  1. Ranulfo Romo, Universidad Nacional Autonoma de Mexico, Mexico

Ethics

Animal experimentation: All experimental procedures complied with the National Institutes of Health guidelines and were approved by the Institutional Animal Care and Use Committees at the New York State Psychiatric Institute and Columbia University (protocols 1230 and AAAE4850, respectively).

Version history

  1. Received: August 23, 2014
  2. Accepted: October 28, 2014
  3. Accepted Manuscript published: October 30, 2014 (version 1)
  4. Version of Record published: November 20, 2014 (version 2)

Copyright

© 2014, Peck & Salzman

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,170
    views
  • 348
    downloads
  • 58
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Christopher J Peck
  2. C Daniel Salzman
(2014)
Amygdala neural activity reflects spatial attention towards stimuli promising reward or threatening punishment
eLife 3:e04478.
https://doi.org/10.7554/eLife.04478

Share this article

https://doi.org/10.7554/eLife.04478

Further reading

    1. Neuroscience
    Hyeri Hwang, Seung-Woo Jin, Inah Lee
    Research Article

    Goal-directed navigation requires the hippocampus to process spatial information in a value-dependent manner, but its underlying mechanism needs to be better understood. Here, we investigated whether the dorsal (dHP) and intermediate (iHP) regions of the hippocampus differentially function in processing place and its associated value information. Rats were trained in a place-preference task involving reward zones with different values in a visually rich virtual reality environment where two-dimensional navigation was possible. Rats learned to use distal visual scenes effectively to navigate to the reward zone associated with a higher reward. Inactivation of both dHP and iHP with muscimol altered the efficiency and precision of wayfinding behavior, but iHP inactivation induced more severe damage, including impaired place preference. Our findings suggest that the iHP is more critical for value-dependent navigation toward higher-value goal locations.

    1. Neuroscience
    Jessica L Verpeut
    Insight

    Behavioral and pharmaceutical interventions reverse defects associated with increased cerebellar long-term depression in a mouse model of Fragile X syndrome.