Ventromedial prefrontal cortex stimulation enhances memory and hippocampal neurogenesis in the middle-aged rats

  1. Albert Liu
  2. Neeraj Jain
  3. Ajai Vyas
  4. Lee Wei Lim  Is a corresponding author
  1. Nanyang Technological University, Singapore

Abstract

Memory dysfunction is a key symptom of age-related dementia. Although recent studies have suggested positive effects of electrical stimulation for memory enhancement, its potential targets remain largely unknown. In this study, we hypothesized that spatially targeted deep brain stimulation of ventromedial prefrontal cortex enhanced memory functions in a middle-aged rat model. Our results show that acute stimulation enhanced the short-, but not the long-term memory in the novel-object recognition task. Interestingly, after chronic high-frequency stimulation, both the short- and long-term memories were robustly improved in the novel-object recognition test and Morris water-maze spatial task compared to sham. Our results also demonstrated that chronic ventromedial prefrontal cortex high-frequency stimulation upregulated neurogenesis-associated genes along with enhanced hippocampal cell proliferation. Importantly, these memory behaviors were strongly correlated with the hippocampal neurogenesis. Overall, these findings suggest that chronic ventromedial prefrontal cortex high-frequency stimulation may serve as a novel effective therapeutic target for dementia-related disorders.

Article and author information

Author details

  1. Albert Liu

    School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
    Competing interests
    The authors declare that no competing interests exist.
  2. Neeraj Jain

    School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
    Competing interests
    The authors declare that no competing interests exist.
  3. Ajai Vyas

    School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
    Competing interests
    The authors declare that no competing interests exist.
  4. Lee Wei Lim

    School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
    For correspondence
    drlimleewei@gmail.com
    Competing interests
    The authors declare that no competing interests exist.

Ethics

Animal experimentation: All procedures were approved by the Institutional of Animals Care and Use Committee of Nanyang Technological University, Singapore, with the reference number ARF-SBS/NIE-A 0169 AZ.

Copyright

© 2015, Liu et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 6,474
    views
  • 960
    downloads
  • 62
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Albert Liu
  2. Neeraj Jain
  3. Ajai Vyas
  4. Lee Wei Lim
(2015)
Ventromedial prefrontal cortex stimulation enhances memory and hippocampal neurogenesis in the middle-aged rats
eLife 4:e04803.
https://doi.org/10.7554/eLife.04803

Share this article

https://doi.org/10.7554/eLife.04803

Further reading

    1. Neuroscience
    Morgan Fitzgerald, Eena Kosik, Bradley Voytek
    Insight

    Changes in neural activity thought to reflect brain aging may be partly influenced by age-dependent signals ‘leaking’ from the heart.

    1. Evolutionary Biology
    2. Neuroscience
    Yujiang Wang, Karoline Leiberg ... Bruno Mota
    Research Article

    The cerebral cortex displays a bewildering diversity of shapes and sizes across and within species. Despite this diversity, we present a universal multi-scale description of primate cortices. We show that all cortical shapes can be described as a set of nested folds of different sizes. As neighbouring folds are gradually merged, the cortices of 11 primate species follow a common scale-free morphometric trajectory, that also overlaps with over 70 other mammalian species. Our results indicate that all cerebral cortices are approximations of the same archetypal fractal shape with a fractal dimension of df = 2.5. Importantly, this new understanding enables a more precise quantification of brain morphology as a function of scale. To demonstrate the importance of this new understanding, we show a scale-dependent effect of ageing on brain morphology. We observe a more than fourfold increase in effect size (from two standard deviations to eight standard deviations) at a spatial scale of approximately 2 mm compared to standard morphological analyses. Our new understanding may, therefore, generate superior biomarkers for a range of conditions in the future.