Transient inhibition of the ERK pathway prevents cerebellar developmental defects and improves long-term motor functions in murine models of neurofibromatosis type 1

  1. Edward Kim
  2. Yuan Wang
  3. Sun-Jung Kim
  4. Miriam Bornhorst
  5. Emmanuelle S Jecrois
  6. Todd E Anthony
  7. Chenran Wang
  8. Yi E Li
  9. Jun-Lin Guan
  10. Geoffrey G Murphy
  11. Yuan Zhu  Is a corresponding author
  1. University of Michigan Medical School, United States
  2. Children's National Medical Center, United States
  3. Rockefeller University, United States
  4. University of Cincinnati College of Medicine, United States

Abstract

Individuals with neurofibromatosis type 1 (NF1) frequently exhibit cognitive and motor impairments and characteristics of autism. The cerebellum plays a critical role in motor control, cognition, and social interaction, suggesting that cerebellar defects likely contribute to NF1-associated neurodevelopmental disorders. Here we show that Nf1 inactivation during early, but not late stages of cerebellar development, disrupts neuronal lamination, which is partially caused by overproduction of glia and subsequent disruption of the Bergmann glia (BG) scaffold. Specific Nf1 inactivation in glutamatergic neuronal precursors causes premature differentiation of granule cell (GC) precursors and ectopic production of unipolar brush cells (UBCs), indirectly disrupting neuronal migration. Transient MEK inhibition during a neonatal window prevents cerebellar developmental defects and improves long-term motor performance of Nf1-deficient mice. This study reveals essential roles of Nf1 in GC/UBC migration by generating correct numbers of glia and controlling GC/UBC fate-specification/differentiation, identifying a therapeutic prevention strategy for multiple NF1-associcated developmental abnormalities.

Article and author information

Author details

  1. Edward Kim

    Division of Molecular Medicine and Genetics, Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, United States
    Competing interests
    The authors declare that no competing interests exist.
  2. Yuan Wang

    Gilbert Family Neurofibromatosis Institute, Center for Cancer and Immunology Research, Children's National Medical Center, Washington, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Sun-Jung Kim

    Gilbert Family Neurofibromatosis Institute, Center for Cancer and Immunology Research, Children's National Medical Center, Washington, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Miriam Bornhorst

    Gilbert Family Neurofibromatosis Institute, Center for Cancer and Immunology Research, Children's National Medical Center, Washington, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Emmanuelle S Jecrois

    Gilbert Family Neurofibromatosis Institute, Center for Cancer and Immunology Research, Children's National Medical Center, Washington, United States
    Competing interests
    The authors declare that no competing interests exist.
  6. Todd E Anthony

    Laboratory of Molecular Biology, Rockefeller University, New York, United States
    Competing interests
    The authors declare that no competing interests exist.
  7. Chenran Wang

    Department of Cancer Biology, University of Cincinnati College of Medicine, Cincinnati, United States
    Competing interests
    The authors declare that no competing interests exist.
  8. Yi E Li

    Division of Molecular Medicine and Genetics, Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, United States
    Competing interests
    The authors declare that no competing interests exist.
  9. Jun-Lin Guan

    Division of Molecular Medicine and Genetics, Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, United States
    Competing interests
    The authors declare that no competing interests exist.
  10. Geoffrey G Murphy

    Molecular and Behavioral Neuroscience Institute, University of Michigan Medical School, Ann Arbor, United States
    Competing interests
    The authors declare that no competing interests exist.
  11. Yuan Zhu

    Gilbert Family Neurofibromatosis Institute, Center for Cancer and Immunology Research, Children's National Medical Center, Washington, United States
    For correspondence
    yzhu@childrensnational.org
    Competing interests
    The authors declare that no competing interests exist.

Ethics

Animal experimentation: All mice in this study were cared for according to the guidelines that were approved by the Animal Care and Use Committees of the University of Michigan at Ann Arbor, MI and the Children's National Medical Center in Washington, DC. The approved protocol number at the University of Michigan is PRO00004481. The project (ID# 30001543) was approved by the IACUC (Protocol#: 309-13-09) of the Children's National Medical Center at Washington.

Copyright

© 2014, Kim et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,408
    views
  • 434
    downloads
  • 25
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Edward Kim
  2. Yuan Wang
  3. Sun-Jung Kim
  4. Miriam Bornhorst
  5. Emmanuelle S Jecrois
  6. Todd E Anthony
  7. Chenran Wang
  8. Yi E Li
  9. Jun-Lin Guan
  10. Geoffrey G Murphy
  11. Yuan Zhu
(2014)
Transient inhibition of the ERK pathway prevents cerebellar developmental defects and improves long-term motor functions in murine models of neurofibromatosis type 1
eLife 3:e05151.
https://doi.org/10.7554/eLife.05151

Share this article

https://doi.org/10.7554/eLife.05151

Further reading

    1. Developmental Biology
    Hanee Lee, Junsu Kang ... Junho Lee
    Research Article

    The evolutionarily conserved Hippo (Hpo) pathway has been shown to impact early development and tumorigenesis by governing cell proliferation and apoptosis. However, its post-developmental roles are relatively unexplored. Here, we demonstrate its roles in post-mitotic cells by showing that defective Hpo signaling accelerates age-associated structural and functional decline of neurons in Caenorhabditis elegans. Loss of wts-1/LATS, the core kinase of the Hpo pathway, resulted in premature deformation of touch neurons and impaired touch responses in a yap-1/YAP-dependent manner, the downstream transcriptional co-activator of LATS. Decreased movement as well as microtubule destabilization by treatment with colchicine or disruption of microtubule-stabilizing genes alleviated the neuronal deformation of wts-1 mutants. Colchicine exerted neuroprotective effects even during normal aging. In addition, the deficiency of a microtubule-severing enzyme spas-1 also led to precocious structural deformation. These results consistently suggest that hyper-stabilized microtubules in both wts-1-deficient neurons and normally aged neurons are detrimental to the maintenance of neuronal structural integrity. In summary, Hpo pathway governs the structural and functional maintenance of differentiated neurons by modulating microtubule stability, raising the possibility that the microtubule stability of fully developed neurons could be a promising target to delay neuronal aging. Our study provides potential therapeutic approaches to combat age- or disease-related neurodegeneration.

    1. Developmental Biology
    Bin Zhu, Rui Wei ... Pei Liang
    Research Article

    Wing dimorphism is a common phenomenon that plays key roles in the environmental adaptation of aphid; however, the signal transduction in response to environmental cues and the regulation mechanism related to this event remain unknown. Adenosine (A) to inosine (I) RNA editing is a post-transcriptional modification that extends transcriptome variety without altering the genome, playing essential roles in numerous biological and physiological processes. Here, we present a chromosome-level genome assembly of the rose-grain aphid Metopolophium dirhodum by using PacBio long HiFi reads and Hi-C technology. The final genome assembly for M. dirhodum is 447.8 Mb, with 98.50% of the assembled sequences anchored to nine chromosomes. The contig and scaffold N50 values are 7.82 and 37.54 Mb, respectively. A total of 18,003 protein-coding genes were predicted, of which 92.05% were functionally annotated. In addition, 11,678 A-to-I RNA-editing sites were systematically identified based on this assembled M. dirhodum genome, and two synonymous A-to-I RNA-editing sites on CYP18A1 were closely associated with transgenerational wing dimorphism induced by crowding. One of these A-to-I RNA-editing sites may prevent the binding of miR-3036-5p to CYP18A1, thus elevating CYP18A1 expression, decreasing 20E titer, and finally regulating the wing dimorphism of offspring. Meanwhile, crowding can also inhibit miR-3036-5p expression and further increase CYP18A1 abundance, resulting in winged offspring. These findings support that A-to-I RNA editing is a dynamic mechanism in the regulation of transgenerational wing dimorphism in aphids and would advance our understanding of the roles of RNA editing in environmental adaptability and phenotypic plasticity.