Reciprocal and dynamic polarization of planar cell polarity core components and myosin

  1. Erin Newman-Smith
  2. Matthew J Kourakis
  3. Wendy Reeves
  4. Michael Veeman
  5. William C Smith  Is a corresponding author
  1. University of California, Santa Barbara, United States

Abstract

The Ciona notochord displays PCP-dependent polarity, with anterior localization of Prickle (Pk) and Strabismus (Stbm). We report that a myosin is polarized anteriorly in these cells and strongly colocalize with Stbm. Disruption of the actin/myosin machinery with cytochalasin or blebbistatin disrupts polarization of Pk and Stbm, but not of myosin complexes, suggesting a PCP-independent aspect of myosin localization. Washout of cytochalasin restored Pk polarization, but not if done in the presence of blebbistatin, suggesting an active role for myosin in core PCP protein localization. On the other hand, in the pk mutant line aimless myosin polarization in approximately one third of the cells, indicating a reciprocal action of core PCP signaling on myosin localization. Our results indicate a complex relationship between the actomyosin cytoskeleton and core PCP components in which myosin is not simply a downstream target of PCP signaling, but also required for PCP protein localization.

Article and author information

Author details

  1. Erin Newman-Smith

    Department of Molecular, Cell and Developmental Biology, University of California, Santa Barbara, Santa Barbara, United States
    Competing interests
    The authors declare that no competing interests exist.
  2. Matthew J Kourakis

    Department of Molecular, Cell and Developmental Biology, University of California, Santa Barbara, Santa barbara, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Wendy Reeves

    Department of Molecular, Cell and Developmental Biology, University of California, Santa Barbara, Santa barbara, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Michael Veeman

    Department of Molecular, Cell and Developmental Biology, University of California, Santa Barbara, Santa barbara, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. William C Smith

    Department of Molecular, Cell and Developmental Biology, University of California, Santa Barbara, Santa Barbara, United States
    For correspondence
    w_smith@lifesci.ucsb.edu
    Competing interests
    The authors declare that no competing interests exist.

Reviewing Editor

  1. K VijayRaghavan, National Centre for Biological Sciences, Tata Institute for Fundamental Research, India

Version history

  1. Received: October 28, 2014
  2. Accepted: April 10, 2015
  3. Accepted Manuscript published: April 13, 2015 (version 1)
  4. Version of Record published: May 5, 2015 (version 2)

Copyright

© 2015, Newman-Smith et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,043
    Page views
  • 424
    Downloads
  • 26
    Citations

Article citation count generated by polling the highest count across the following sources: Crossref, Scopus, PubMed Central.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Erin Newman-Smith
  2. Matthew J Kourakis
  3. Wendy Reeves
  4. Michael Veeman
  5. William C Smith
(2015)
Reciprocal and dynamic polarization of planar cell polarity core components and myosin
eLife 4:e05361.
https://doi.org/10.7554/eLife.05361

Share this article

https://doi.org/10.7554/eLife.05361

Further reading

    1. Developmental Biology
    2. Neuroscience
    Tariq Zaman, Daniel Vogt ... Michael R Williams
    Research Article

    The cell-type-specific expression of ligand/receptor and cell-adhesion molecules is a fundamental mechanism through which neurons regulate connectivity. Here, we determine a functional relevance of the long-established mutually exclusive expression of the receptor tyrosine kinase Kit and the trans-membrane protein Kit Ligand by discrete populations of neurons in the mammalian brain. Kit is enriched in molecular layer interneurons (MLIs) of the cerebellar cortex (i.e., stellate and basket cells), while cerebellar Kit Ligand is selectively expressed by a target of their inhibition, Purkinje cells (PCs). By in vivo genetic manipulation spanning embryonic development through adulthood, we demonstrate that PC Kit Ligand and MLI Kit are required for, and capable of driving changes in, the inhibition of PCs. Collectively, these works in mice demonstrate that the Kit Ligand/Kit receptor dyad sustains mammalian central synapse function and suggest a rationale for the affiliation of Kit mutation with neurodevelopmental disorders.

    1. Developmental Biology
    2. Neuroscience
    Smrithi Prem, Bharati Dev ... Emanuel DiCicco-Bloom
    Research Article

    Autism spectrum disorder (ASD) is defined by common behavioral characteristics, raising the possibility of shared pathogenic mechanisms. Yet, vast clinical and etiological heterogeneity suggests personalized phenotypes. Surprisingly, our iPSC studies find that six individuals from two distinct ASD-subtypes, idiopathic and 16p11.2 deletion, have common reductions in neural precursor cell (NPC) neurite outgrowth and migration even though whole genome sequencing demonstrates no genetic overlap between the datasets. To identify signaling differences that may contribute to these developmental defects, an unbiased phospho-(p)-proteome screen was performed. Surprisingly despite the genetic heterogeneity, hundreds of shared p-peptides were identified between autism subtypes including the mTOR pathway. mTOR signaling alterations were confirmed in all NPCs across both ASD-subtypes, and mTOR modulation rescued ASD phenotypes and reproduced autism NPC associated phenotypes in control NPCs. Thus, our studies demonstrate that genetically distinct ASD subtypes have common defects in neurite outgrowth and migration which are driven by the shared pathogenic mechanism of mTOR signaling dysregulation.