Homeostatic synaptic depression is achieved through a regulated decrease in presynaptic calcium channel abundance
Abstract
Homeostatic signaling stabilizes synaptic transmission at the neuromuscular junction (NMJ) of Drosophila, mice, and human. It is believed that homeostatic signaling at the NMJ is bi-directional and considerable progress has been made identifying mechanisms underlying the homeostatic potentiation of neurotransmitter release. However, very little is understood mechanistically about the opposing process, homeostatic depression, and how bi-directional plasticity is achieved. Here we show that homeostatic potentiation and depression can be simultaneously induced, demonstrating true bi-directional plasticity. Next, we show that mutations that block homeostatic potentiation do not alter homeostatic depression, demonstrating that these are genetically separable processes. Finally, we show that homeostatic depression is achieved by decreased presynaptic calcium channel abundance and calcium influx, changes that are independent of the presynaptic action potential waveform. Thus, we identify a novel mechanism of homeostatic synaptic plasticity and propose a model that can account for the observed bi-directional, homeostatic control of presynaptic neurotransmitter release.
Article and author information
Author details
Copyright
© 2015, Gaviño et al.
This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.
Metrics
-
- 2,728
- views
-
- 705
- downloads
-
- 52
- citations
Views, downloads and citations are aggregated across all versions of this paper published by eLife.
Download links
Downloads (link to download the article as PDF)
Open citations (links to open the citations from this article in various online reference manager services)
Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)
Further reading
-
- Neuroscience
In congenital stationary night blindness, type 2 (CSNB2)—a disorder involving the Cav1.4 (L-type) Ca2+ channel—visual impairment is mild considering that Cav1.4 mediates synaptic release from rod and cone photoreceptors. Here, we addressed this conundrum using a Cav1.4 knockout (KO) mouse and a knock-in (G369i KI) mouse expressing a non-conducting Cav1.4. Surprisingly, Cav3 (T-type) Ca2+ currents were detected in cones of G369i KI mice and Cav1.4 KO mice but not in cones of wild-type mouse, ground squirrels, and macaque retina. Whereas Cav1.4 KO mice are blind, G369i KI mice exhibit normal photopic (i.e. cone-mediated) visual behavior. Cone synapses, which fail to form in Cav1.4 KO mice, are present, albeit enlarged, and with some errors in postsynaptic wiring in G369i KI mice. While Cav1.4 KO mice lack evidence of cone synaptic responses, electrophysiological recordings in G369i KI mice revealed nominal transmission from cones to horizontal cells and bipolar cells. In CSNB2, we propose that Cav3 channels maintain cone synaptic output provided that the nonconducting role of Cav1.4 in cone synaptogenesis remains intact. Our findings reveal an unexpected form of homeostatic plasticity that relies on a non-canonical role of an ion channel.
-
- Neuroscience
Animals navigate by learning the spatial layout of their environment. We investigated spatial learning of mice in an open maze where food was hidden in one of a hundred holes. Mice leaving from a stable entrance learned to efficiently navigate to the food without the need for landmarks. We developed a quantitative framework to reveal how the mice estimate the food location based on analyses of trajectories and active hole checks. After learning, the computed ‘target estimation vector’ (TEV) closely approximated the mice’s route and its hole check distribution. The TEV required learning both the direction and distance of the start to food vector, and our data suggests that different learning dynamics underlie these estimates. We propose that the TEV can be precisely connected to the properties of hippocampal place cells. Finally, we provide the first demonstration that, after learning the location of two food sites, the mice took a shortcut between the sites, demonstrating that they had generated a cognitive map.