Bovine F1Fo ATP synthase monomers bend the lipid bilayer in 2D membrane crystals

  1. Chimari Jiko
  2. Karen M Davies
  3. Kyoko Shinzawa-Itoh
  4. Kazutoshi Tani
  5. Shintaro Maeda
  6. Deryck J Mills
  7. Tomitake Tsukihara
  8. Yoshinori Fujiyoshi
  9. Werner Kühlbrandt
  10. Christoph Gerle  Is a corresponding author
  1. Osaka University, Japan
  2. Max Planck Institute of Biophysics, Germany
  3. University of Hyogo, Japan
  4. Nagoya University, Japan

Abstract

We have used a combination of electron cryo-tomography, subtomogram averaging and electron crystallographic image processing to analyze the structure of intact bovine F1Fo ATP synthase in 2D membrane crystals. ATPase assays and mass spectrometry analysis of the 2D crystals confirmed the enzyme complex was complete and active. The structure of the matrix-exposed region was determined at 24 Å resolution by subtomogram averaging, and repositioned into the tomographic volume to reveal the crystal packing. F1Fo ATP synthase complexes are inclined by 16{degree sign} relative to the crystal plane, resulting in a zigzag topology of the membrane and indicating that monomeric bovine heart F1Fo ATP synthase by itself is sufficient to deform lipid bilayers. This local membrane curvature is likely to be instrumental in the formation of ATP synthase dimers and dimer rows, and thus for the shaping of mitochondrial cristae.

Article and author information

Author details

  1. Chimari Jiko

    Institute for Protein Research, Osaka University, Osaka, Japan
    Competing interests
    No competing interests declared.
  2. Karen M Davies

    Department of Structural Biology, Max Planck Institute of Biophysics, Frankfurt am Main, Germany
    Competing interests
    No competing interests declared.
  3. Kyoko Shinzawa-Itoh

    Picobiology Institute, Department of Life Science, Graduate School of Life Science, University of Hyogo, Kamigori, Japan
    Competing interests
    No competing interests declared.
  4. Kazutoshi Tani

    Cellular and Structural Physiology Institute, Nagoya University, Nagoya, Japan
    Competing interests
    No competing interests declared.
  5. Shintaro Maeda

    Picobiology Institute, Department of Life Science, Graduate School of Life Science, University of Hyogo, Kamigori, Japan
    Competing interests
    No competing interests declared.
  6. Deryck J Mills

    Department of Structural Biology, Max Planck Institute of Biophysics, Frankfurt am Main, Germany
    Competing interests
    No competing interests declared.
  7. Tomitake Tsukihara

    Picobiology Institute, Department of Life Science, Graduate School of Life Science, University of Hyogo, Kamigori, Japan
    Competing interests
    No competing interests declared.
  8. Yoshinori Fujiyoshi

    Cellular and Structural Physiology Institute, Nagoya University, Nagoya, Japan
    Competing interests
    No competing interests declared.
  9. Werner Kühlbrandt

    Department of Structural Biology, Max Planck Institute of Biophysics, Frankfurt am Main, Germany
    Competing interests
    Werner Kühlbrandt, Reviewing editor, eLife.
  10. Christoph Gerle

    Picobiology Institute, Department of Life Science, Graduate School of Life Science, University of Hyogo, Kamigori, Japan
    For correspondence
    gerle.christoph@gmail.com
    Competing interests
    No competing interests declared.

Copyright

© 2015, Jiko et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 3,255
    views
  • 740
    downloads
  • 71
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Chimari Jiko
  2. Karen M Davies
  3. Kyoko Shinzawa-Itoh
  4. Kazutoshi Tani
  5. Shintaro Maeda
  6. Deryck J Mills
  7. Tomitake Tsukihara
  8. Yoshinori Fujiyoshi
  9. Werner Kühlbrandt
  10. Christoph Gerle
(2015)
Bovine F1Fo ATP synthase monomers bend the lipid bilayer in 2D membrane crystals
eLife 4:e06119.
https://doi.org/10.7554/eLife.06119

Share this article

https://doi.org/10.7554/eLife.06119

Further reading

    1. Biochemistry and Chemical Biology
    2. Structural Biology and Molecular Biophysics
    Joar Esteban Pinto Torres, Mathieu Claes ... Yann G-J Sterckx
    Research Article

    African trypanosomes are the causative agents of neglected tropical diseases affecting both humans and livestock. Disease control is highly challenging due to an increasing number of drug treatment failures. African trypanosomes are extracellular, blood-borne parasites that mainly rely on glycolysis for their energy metabolism within the mammalian host. Trypanosomal glycolytic enzymes are therefore of interest for the development of trypanocidal drugs. Here, we report the serendipitous discovery of a camelid single-domain antibody (sdAb aka Nanobody) that selectively inhibits the enzymatic activity of trypanosomatid (but not host) pyruvate kinases through an allosteric mechanism. By combining enzyme kinetics, biophysics, structural biology, and transgenic parasite survival assays, we provide a proof-of-principle that the sdAb-mediated enzyme inhibition negatively impacts parasite fitness and growth.

    1. Structural Biology and Molecular Biophysics
    Manming Xu, Sarath Chandra Dantu ... Shozeb Haider
    Research Article

    The relationship between protein dynamics and function is essential for understanding biological processes and developing effective therapeutics. Functional sites within proteins are critical for activities such as substrate binding, catalysis, and structural changes. Existing computational methods for the predictions of functional residues are trained on sequence, structural, and experimental data, but they do not explicitly model the influence of evolution on protein dynamics. This overlooked contribution is essential as it is known that evolution can fine-tune protein dynamics through compensatory mutations either to improve the proteins’ performance or diversify its function while maintaining the same structural scaffold. To model this critical contribution, we introduce DyNoPy, a computational method that combines residue coevolution analysis with molecular dynamics simulations, revealing hidden correlations between functional sites. DyNoPy constructs a graph model of residue–residue interactions, identifies communities of key residue groups, and annotates critical sites based on their roles. By leveraging the concept of coevolved dynamical couplings—residue pairs with critical dynamical interactions that have been preserved during evolution—DyNoPy offers a powerful method for predicting and analysing protein evolution and dynamics. We demonstrate the effectiveness of DyNoPy on SHV-1 and PDC-3, chromosomally encoded β-lactamases linked to antibiotic resistance, highlighting its potential to inform drug design and address pressing healthcare challenges.