Rapid epigenetic adaptation to uncontrolled heterochromatin spreading

  1. Jiyong Wang
  2. Bharat D Reddy
  3. Songtao Jia  Is a corresponding author
  1. Columbia University, United States

Abstract

Heterochromatin, a highly compact chromatin state characterized by histone H3K9 methylation and HP1 protein binding, silences the underlying DNA and influences the expression of neighboring genes. However, the mechanisms that regulate heterochromatin spreading are not well understood. Here we show that the conserved Mst2 histone acetyltransferase complex in fission yeast regulates histone turnover at heterochromatin regions to control heterochromatin spreading and prevents ectopic heterochromatin assembly. The combined loss of Mst2 and the JmjC domain protein Epe1 results in uncontrolled heterochromatin spreading and massive ectopic heterochromatin, leading to severe growth defects due to the inactivation of essential genes. Interestingly, these cells quickly recover by accumulating heterochromatin at genes essential for heterochromatin assembly, leading to their reduced expression to restrain heterochromatin spreading. Our studies discover redundant pathways that control heterochromatin spreading and prevent ectopic heterochromatin assembly and reveal a fast epigenetic adaptation response to changes in heterochromatin landscape.

Article and author information

Author details

  1. Jiyong Wang

    Department of Biological Sciences, Columbia University, New York, United States
    Competing interests
    The authors declare that no competing interests exist.
  2. Bharat D Reddy

    Department of Biological Sciences, Columbia University, New York, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Songtao Jia

    Department of Biological Sciences, Columbia University, New York, United States
    For correspondence
    jia@biology.columbia.edu
    Competing interests
    The authors declare that no competing interests exist.

Copyright

© 2015, Wang et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 3,490
    views
  • 879
    downloads
  • 69
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Jiyong Wang
  2. Bharat D Reddy
  3. Songtao Jia
(2015)
Rapid epigenetic adaptation to uncontrolled heterochromatin spreading
eLife 4:e06179.
https://doi.org/10.7554/eLife.06179

Share this article

https://doi.org/10.7554/eLife.06179

Further reading

    1. Cancer Biology
    2. Chromosomes and Gene Expression
    Ananda Kishore Mukherjee, Subhajit Dutta ... Shantanu Chowdhury
    Research Article

    Telomeres are crucial for cancer progression. Immune signalling in the tumour microenvironment has been shown to be very important in cancer prognosis. However, the mechanisms by which telomeres might affect tumour immune response remain poorly understood. Here, we observed that interleukin-1 signalling is telomere-length dependent in cancer cells. Mechanistically, non-telomeric TRF2 (telomeric repeat binding factor 2) binding at the IL-1-receptor type-1 (IL1R1) promoter was found to be affected by telomere length. Enhanced TRF2 binding at the IL1R1 promoter in cells with short telomeres directly recruited the histone-acetyl-transferase (HAT) p300, and consequent H3K27 acetylation activated IL1R1. This altered NF-kappa B signalling and affected downstream cytokines like IL6, IL8, and TNF. Further, IL1R1 expression was telomere-sensitive in triple-negative breast cancer (TNBC) clinical samples. Infiltration of tumour-associated macrophages (TAM) was also sensitive to the length of tumour cell telomeres and highly correlated with IL1R1 expression. The use of both IL1 Receptor antagonist (IL1RA) and IL1R1 targeting ligands could abrogate M2 macrophage infiltration in TNBC tumour organoids. In summary, using TNBC cancer tissue (>90 patients), tumour-derived organoids, cancer cells, and xenograft tumours with either long or short telomeres, we uncovered a heretofore undeciphered function of telomeres in modulating IL1 signalling and tumour immunity.

    1. Cell Biology
    2. Chromosomes and Gene Expression
    Bethany M Bartlett, Yatendra Kumar ... Wendy A Bickmore
    Research Article Updated

    During oncogene-induced senescence there are striking changes in the organisation of heterochromatin in the nucleus. This is accompanied by activation of a pro-inflammatory gene expression programme – the senescence-associated secretory phenotype (SASP) – driven by transcription factors such as NF-κB. The relationship between heterochromatin re-organisation and the SASP has been unclear. Here, we show that TPR, a protein of the nuclear pore complex basket required for heterochromatin re-organisation during senescence, is also required for the very early activation of NF-κB signalling during the stress-response phase of oncogene-induced senescence. This is prior to activation of the SASP and occurs without affecting NF-κB nuclear import. We show that TPR is required for the activation of innate immune signalling at these early stages of senescence and we link this to the formation of heterochromatin-enriched cytoplasmic chromatin fragments thought to bleb off from the nuclear periphery. We show that HMGA1 is also required for cytoplasmic chromatin fragment formation. Together these data suggest that re-organisation of heterochromatin is involved in altered structural integrity of the nuclear periphery during senescence, and that this can lead to activation of cytoplasmic nucleic acid sensing, NF-κB signalling, and activation of the SASP.