Sensitization of neonatal rat lumbar motoneuron by the inflammatory pain mediator bradykinin

  1. Mouloud Bouhadfane
  2. Attila Kaszás
  3. Balázs Rózsa
  4. Ronald M Harris-Warrick
  5. Laurent Vinay
  6. Frédéric Brocard  Is a corresponding author
  1. Aix-Marseille Université, France
  2. Aix Marseille Université, France
  3. Hungarian Academy of Sciences, Hungary
  4. Cornell University, United States
  5. Aix Marseille University, France

Abstract

Bradykinin is a potent inflammatory mediator that causes hyperalgesia. The action of bradykinin on the sensory system is well documented but its effects on motoneurons, the final pathway of the motor system, are unknown. By a combination of patch-clamp recordings and two-photon calcium imaging, we found that bradykinin strongly sensitizes spinal motoneurons. Sensitization was characterized by an increased ability to generate self-sustained spiking in response to excitatory inputs. Our pharmacological study described a dual ionic mechanism to sensitize motoneurons, including inhibition of a barium-sensitive resting K+ conductance and activation of a nonselective cationic conductance primarily mediated by Na+. Examination of the upstream signaling pathways provided evidence for postsynaptic activation of B2 receptors, G protein activation of phospholipase C, InsP3 synthesis and calmodulin activation. This study questions the influence of motoneurons in the assessment of hyperalgesia since the withdrawal motor reflex is commonly used as a surrogate pain model.

Article and author information

Author details

  1. Mouloud Bouhadfane

    Institut de Neurosciences de la Timone, Aix-Marseille Université, Marseille, France
    Competing interests
    No competing interests declared.
  2. Attila Kaszás

    Institut de Neuroscience des Systèmes, Aix Marseille Université, Marseille, France
    Competing interests
    No competing interests declared.
  3. Balázs Rózsa

    Two-Photon Imaging Center, Institute of Experimental Medicine, Hungarian Academy of Sciences, Budapest, Hungary
    Competing interests
    Balázs Rózsa, Founder of Femtonics Ltd and a member of its scientific advisory board.
  4. Ronald M Harris-Warrick

    Department of Neurobiology and Behavior, Cornell University, Ithaca, United States
    Competing interests
    No competing interests declared.
  5. Laurent Vinay

    Institut de Neurosciences de la Timone, Aix-Marseille Université, Marseille, France
    Competing interests
    No competing interests declared.
  6. Frédéric Brocard

    Institut de Neurosciences de la Timone, Aix Marseille University, Marseille, France
    For correspondence
    frederic.brocard@univ-amu.fr
    Competing interests
    No competing interests declared.

Reviewing Editor

  1. Ronald L Calabrese, Emory University, United States

Ethics

Animal experimentation: All animals care and use conformed to the French regulations (Ministry of Food, Agriculture and Fisheries; Division of Health and Protection of Animals; Ministry of Higher Education and Research) and were approved by the local ethics committee (Comité d'Ethique en Neurosciences INT-Marseille, authorization Nb A9 01 13).

Version history

  1. Received: December 20, 2014
  2. Accepted: March 16, 2015
  3. Accepted Manuscript published: March 17, 2015 (version 1)
  4. Version of Record published: April 27, 2015 (version 2)

Copyright

© 2015, Bouhadfane et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,171
    views
  • 250
    downloads
  • 11
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Mouloud Bouhadfane
  2. Attila Kaszás
  3. Balázs Rózsa
  4. Ronald M Harris-Warrick
  5. Laurent Vinay
  6. Frédéric Brocard
(2015)
Sensitization of neonatal rat lumbar motoneuron by the inflammatory pain mediator bradykinin
eLife 4:e06195.
https://doi.org/10.7554/eLife.06195

Share this article

https://doi.org/10.7554/eLife.06195

Further reading

    1. Neuroscience
    Alexandra H Leighton, Juliette E Cheyne, Christian Lohmann
    Research Article

    Synaptic inputs to cortical neurons are highly structured in adult sensory systems, such that neighboring synapses along dendrites are activated by similar stimuli. This organization of synaptic inputs, called synaptic clustering, is required for high-fidelity signal processing, and clustered synapses can already be observed before eye opening. However, how clustered inputs emerge during development is unknown. Here, we employed concurrent in vivo whole-cell patch-clamp and dendritic calcium imaging to map spontaneous synaptic inputs to dendrites of layer 2/3 neurons in the mouse primary visual cortex during the second postnatal week until eye opening. We found that the number of functional synapses and the frequency of transmission events increase several fold during this developmental period. At the beginning of the second postnatal week, synapses assemble specifically in confined dendritic segments, whereas other segments are devoid of synapses. By the end of the second postnatal week, just before eye opening, dendrites are almost entirely covered by domains of co-active synapses. Finally, co-activity with their neighbor synapses correlates with synaptic stabilization and potentiation. Thus, clustered synapses form in distinct functional domains presumably to equip dendrites with computational modules for high-capacity sensory processing when the eyes open.

    1. Neuroscience
    Augustine Xiaoran Yuan, Jennifer Colonell ... Timothy D Harris
    Tools and Resources

    Accurate tracking of the same neurons across multiple days is crucial for studying changes in neuronal activity during learning and adaptation. Advances in high-density extracellular electrophysiology recording probes, such as Neuropixels, provide a promising avenue to accomplish this goal. Identifying the same neurons in multiple recordings is, however, complicated by non-rigid movement of the tissue relative to the recording sites (drift) and loss of signal from some neurons. Here, we propose a neuron tracking method that can identify the same cells independent of firing statistics, that are used by most existing methods. Our method is based on between-day non-rigid alignment of spike-sorted clusters. We verified the same cell identity in mice using measured visual receptive fields. This method succeeds on datasets separated from 1 to 47 days, with an 84% average recovery rate.