Sensitization of neonatal rat lumbar motoneuron by the inflammatory pain mediator bradykinin
Abstract
Bradykinin is a potent inflammatory mediator that causes hyperalgesia. The action of bradykinin on the sensory system is well documented but its effects on motoneurons, the final pathway of the motor system, are unknown. By a combination of patch-clamp recordings and two-photon calcium imaging, we found that bradykinin strongly sensitizes spinal motoneurons. Sensitization was characterized by an increased ability to generate self-sustained spiking in response to excitatory inputs. Our pharmacological study described a dual ionic mechanism to sensitize motoneurons, including inhibition of a barium-sensitive resting K+ conductance and activation of a nonselective cationic conductance primarily mediated by Na+. Examination of the upstream signaling pathways provided evidence for postsynaptic activation of B2 receptors, G protein activation of phospholipase C, InsP3 synthesis and calmodulin activation. This study questions the influence of motoneurons in the assessment of hyperalgesia since the withdrawal motor reflex is commonly used as a surrogate pain model.
Article and author information
Author details
Ethics
Animal experimentation: All animals care and use conformed to the French regulations (Ministry of Food, Agriculture and Fisheries; Division of Health and Protection of Animals; Ministry of Higher Education and Research) and were approved by the local ethics committee (Comité d'Ethique en Neurosciences INT-Marseille, authorization Nb A9 01 13).
Copyright
© 2015, Bouhadfane et al.
This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.
Metrics
-
- 1,175
- views
-
- 252
- downloads
-
- 11
- citations
Views, downloads and citations are aggregated across all versions of this paper published by eLife.
Download links
Downloads (link to download the article as PDF)
Open citations (links to open the citations from this article in various online reference manager services)
Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)
Further reading
-
- Neuroscience
This work proposes µGUIDE: a general Bayesian framework to estimate posterior distributions of tissue microstructure parameters from any given biophysical model or signal representation, with exemplar demonstration in diffusion-weighted magnetic resonance imaging. Harnessing a new deep learning architecture for automatic signal feature selection combined with simulation-based inference and efficient sampling of the posterior distributions, µGUIDE bypasses the high computational and time cost of conventional Bayesian approaches and does not rely on acquisition constraints to define model-specific summary statistics. The obtained posterior distributions allow to highlight degeneracies present in the model definition and quantify the uncertainty and ambiguity of the estimated parameters.
-
- Neuroscience
Mice can generate a cognitive map of an environment based on self-motion signals when there is a fixed association between their starting point and the location of their goal.