A novel inhibitory nucleo-cortical circuit controls cerebellar Golgi cell activity

  1. Lea Ankri
  2. Zoé Husson
  3. Katarzyna Pietrajtis
  4. Rémi Proville
  5. Clément Léna
  6. Yosef Yarom
  7. Stéphane Dieudonné  Is a corresponding author
  8. Marylka Yoe Uusisaari
  1. Hebrew University of Jerusalem, Israel
  2. Ecole Normale Supérieure, France

Abstract

The cerebellum, a crucial center for motor coordination, is composed of a cortex and several nuclei. The main mode of interaction between these two parts is considered to be formed by the inhibitory control of the nuclei by cortical Purkinje neurons. We now amend this view by showing that inhibitory GABA-glycinergic neurons of the cerebellar nuclei project profusely into the cerebellar cortex, where they make synaptic contacts on a GABAergic subpopulation of cerebellar Golgi cells. These spontaneously firing Golgi cells are inhibited by optogenetic activation of the inhibitory nucleo-cortical fibers both in vitro and in vivo. Our data suggest that the cerebellar nuclei may contribute to the functional recruitment of the cerebellar cortex by decreasing Golgi cell inhibition onto granule cells.

Article and author information

Author details

  1. Lea Ankri

    Department of Neurobiology, Edmond and Lily Safra Center for Brain Sciences, Hebrew University of Jerusalem, Jerusalem, Israel
    Competing interests
    The authors declare that no competing interests exist.
  2. Zoé Husson

    Inhibitory Transmission Team, Institut de Biologie de l'École Normale Supérieure, Ecole Normale Supérieure, Paris, France
    Competing interests
    The authors declare that no competing interests exist.
  3. Katarzyna Pietrajtis

    Inhibitory Transmission Team, Institut de Biologie de l'École Normale Supérieure, Ecole Normale Supérieure, Paris, France
    Competing interests
    The authors declare that no competing interests exist.
  4. Rémi Proville

    Centre national de la recherche scientifique, Institut de Biologie de l'École Normale Supérieure, Ecole Normale Supérieure, Paris, France
    Competing interests
    The authors declare that no competing interests exist.
  5. Clément Léna

    Centre national de la recherche scientifique, Institut de Biologie de l'École Normale Supérieure, Ecole Normale Supérieure, Paris, France
    Competing interests
    The authors declare that no competing interests exist.
  6. Yosef Yarom

    Department of Neurobiology, Edmond and Lily Safra Center for Brain Sciences, Hebrew University of Jerusalem, Jerusalem, Israel
    Competing interests
    The authors declare that no competing interests exist.
  7. Stéphane Dieudonné

    Inhibitory Transmission Team, Institut de Biologie de l'École Normale Supérieure, Ecole Normale Supérieure, Paris, France
    For correspondence
    dieudon@biologie.ens.fr
    Competing interests
    The authors declare that no competing interests exist.
  8. Marylka Yoe Uusisaari

    Department of Neurobiology, Edmond and Lily Safra Center for Brain Sciences, Hebrew University of Jerusalem, Jerusalem, Israel
    Competing interests
    The authors declare that no competing interests exist.

Ethics

Animal experimentation: All animal manipulations were made in strict accordance with guidelines of the Centre National de la Recherche Scientifique and the Hebrew University's Animal Care and Use Committee (Ethic permission # NS-12-12505-4).

Reviewing Editor

  1. Michael Häusser, University College London, United Kingdom

Publication history

  1. Received: December 27, 2014
  2. Accepted: May 11, 2015
  3. Accepted Manuscript published: May 12, 2015 (version 1)
  4. Version of Record published: June 10, 2015 (version 2)

Copyright

© 2015, Ankri et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,841
    Page views
  • 763
    Downloads
  • 61
    Citations

Article citation count generated by polling the highest count across the following sources: Crossref, Scopus, PubMed Central.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Lea Ankri
  2. Zoé Husson
  3. Katarzyna Pietrajtis
  4. Rémi Proville
  5. Clément Léna
  6. Yosef Yarom
  7. Stéphane Dieudonné
  8. Marylka Yoe Uusisaari
(2015)
A novel inhibitory nucleo-cortical circuit controls cerebellar Golgi cell activity
eLife 4:e06262.
https://doi.org/10.7554/eLife.06262

Further reading

    1. Medicine
    2. Neuroscience
    Sachin Sharma, Russell Littman ... Olujimi A Ajijola
    Research Article Updated

    The cell bodies of postganglionic sympathetic neurons innervating the heart primarily reside in the stellate ganglion (SG), alongside neurons innervating other organs and tissues. Whether cardiac-innervating stellate ganglionic neurons (SGNs) exhibit diversity and distinction from those innervating other tissues is not known. To identify and resolve the transcriptomic profiles of SGNs innervating the heart, we leveraged retrograde tracing techniques using adeno-associated virus (AAV) expressing fluorescent proteins (GFP or Td-tomato) with single cell RNA sequencing. We investigated electrophysiologic, morphologic, and physiologic roles for subsets of cardiac-specific neurons and found that three of five adrenergic SGN subtypes innervate the heart. These three subtypes stratify into two subpopulations; high (NA1a) and low (NA1b and NA1c) neuropeptide-Y (NPY) -expressing cells, exhibit distinct morphological, neurochemical, and electrophysiologic characteristics. In physiologic studies in transgenic mouse models modulating NPY signaling, we identified differential control of cardiac responses by these two subpopulations to high and low stress states. These findings provide novel insights into the unique properties of neurons responsible for cardiac sympathetic regulation, with implications for novel strategies to target specific neuronal subtypes for sympathetic blockade in cardiac disease.

    1. Neuroscience
    Hang Hu, Rachel E Hostetler, Ariel Agmon
    Research Article Updated

    Oscillations of extracellular voltage, reflecting synchronous, rhythmic activity in large populations of neurons, are a ubiquitous feature in the mammalian brain, and are thought to subserve important, if not fully understood roles in normal and abnormal brain function. Oscillations at different frequency bands are hallmarks of specific brain and behavioral states. At the higher end of the spectrum, 150-200 Hz ripples occur in the hippocampus during slow-wave sleep, and ultrafast (400-600 Hz) oscillations arise in the somatosensory cortices of humans and several other mammalian species in response to peripheral nerve stimulation or punctate sensory stimuli. Here we report that brief optogenetic activation of thalamocortical axons, in brain slices from mouse somatosensory (barrel) cortex, elicited in the thalamorecipient layer local field potential (LFP) oscillations which we dubbed “ripplets”. Ripplets originated in the postsynaptic cortical network and consisted of a precisely repeating sequence of 2‑5 negative transients, closely resembling hippocampal ripples but, at ~400 Hz, over twice as fast. Fast-spiking (FS) inhibitory interneurons fired highly synchronous 400 Hz spike bursts entrained to the LFP oscillation, while regular-spiking (RS), excitatory neurons typically fired only 1-2 spikes per ripplet, in antiphase to FS spikes, and received synchronous sequences of alternating excitatory and inhibitory inputs. We suggest that ripplets are an intrinsically generated cortical response to a strong, synchronous thalamocortical volley, and could provide increased bandwidth for encoding and transmitting sensory information. Importantly, optogenetically induced ripplets are a uniquely accessible model system for studying synaptic mechanisms of fast and ultrafast cortical and hippocampal oscillations.