Palmitoylation of LIM Kinase-1 ensures spine-specific actin polymerization and morphological plasticity

  1. Joju George
  2. Cary Soares
  3. Audrey Montersino
  4. Jean-Claude Beique
  5. Gareth M Thomas  Is a corresponding author
  1. Indiana University School of Medicine, United States
  2. University of Ottawa, Canada
  3. Temple University School of Medicine, United States

Abstract

Precise regulation of the dendritic spine actin cytoskeleton is critical for neurodevelopment and neuronal plasticity, but how neurons spatially control actin dynamics is not well defined. Here, we identify direct palmitoylation of the actin regulator LIM kinase-1 (LIMK1) as a novel mechanism to control spine-specific actin dynamics. A conserved palmitoyl-motif is necessary and sufficient to target LIMK1 to spines and to anchor LIMK1 in spines. ShRNA knockdown/rescue experiments reveal that LIMK1 palmitoylation is essential for normal spine actin polymerization, for spine-specific structural plasticity and for long-term spine stability. Palmitoylation is critical for LIMK1 function because this modification not only controls LIMK1 targeting, but is also essential for LIMK1 activation by its membrane-localized upstream activator PAK. These novel roles for palmitoylation in the spatial control of actin dynamics and kinase signaling provide new insights into structural plasticity mechanisms and strengthen links between dendritic spine impairments and neuropathological conditions.

Article and author information

Author details

  1. Joju George

    Department of Anatomy and Cell Biology, The Stark Neuroscience Research Institute, Indiana University School of Medicine, Indianapolis, United States
    Competing interests
    The authors declare that no competing interests exist.
  2. Cary Soares

    Heart and Stroke Partnership for Stroke Recovery, University of Ottawa, Ottawa, Canada
    Competing interests
    The authors declare that no competing interests exist.
  3. Audrey Montersino

    Shriners Hospitals Pediatric Research Center, Temple University School of Medicine, Philadelphia, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Jean-Claude Beique

    Heart and Stroke Partnership for Stroke Recovery, University of Ottawa, Ottawa, Canada
    Competing interests
    The authors declare that no competing interests exist.
  5. Gareth M Thomas

    Shriners Hospitals Pediatric Research Center, Temple University School of Medicine, Philadelphia, United States
    For correspondence
    gareth.thomas@temple.edu
    Competing interests
    The authors declare that no competing interests exist.

Ethics

Animal experimentation: This study was performed in strict accordance with the recommendations in the Guide for the Care and Use of Laboratory Animals of the National Institutes of Health. All of the animals were handled according to approved institutional animal care and use committee (IACUC) protocols (#3439, #4277) of Temple University School of Medicine.

Copyright

© 2015, George et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,730
    views
  • 717
    downloads
  • 47
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Joju George
  2. Cary Soares
  3. Audrey Montersino
  4. Jean-Claude Beique
  5. Gareth M Thomas
(2015)
Palmitoylation of LIM Kinase-1 ensures spine-specific actin polymerization and morphological plasticity
eLife 4:e06327.
https://doi.org/10.7554/eLife.06327

Share this article

https://doi.org/10.7554/eLife.06327

Further reading

    1. Neuroscience
    Masahiro Takigawa, Marta Huelin Gorriz ... Daniel Bendor
    Research Article

    During rest and sleep, memory traces replay in the brain. The dialogue between brain regions during replay is thought to stabilize labile memory traces for long-term storage. However, because replay is an internally-driven, spontaneous phenomenon, it does not have a ground truth - an external reference that can validate whether a memory has truly been replayed. Instead, replay detection is based on the similarity between the sequential neural activity comprising the replay event and the corresponding template of neural activity generated during active locomotion. If the statistical likelihood of observing such a match by chance is sufficiently low, the candidate replay event is inferred to be replaying that specific memory. However, without the ability to evaluate whether replay detection methods are successfully detecting true events and correctly rejecting non-events, the evaluation and comparison of different replay methods is challenging. To circumvent this problem, we present a new framework for evaluating replay, tested using hippocampal neural recordings from rats exploring two novel linear tracks. Using this two-track paradigm, our framework selects replay events based on their temporal fidelity (sequence-based detection), and evaluates the detection performance using each event's track discriminability, where sequenceless decoding across both tracks is used to quantify whether the track replaying is also the most likely track being reactivated.

    1. Neuroscience
    Andrew E Worthy, Joanna T Anderson ... Francisco J Alvarez
    Research Article

    Spinal cord interneurons play critical roles shaping motor output, but their precise identity and connectivity remain unclear. Focusing on the V1 interneuron cardinal class we defined four major V1 subsets in the mouse according to neurogenesis, genetic lineage-tracing, synaptic output to motoneurons, and synaptic inputs from muscle afferents. Sequential neurogenesis delineates different V1 subsets: two early born (Renshaw and Pou6f2) and two late born (Foxp2 and Sp8). Early born Renshaw cells and late born Foxp2-V1 interneurons are tightly coupled to motoneurons, while early born Pou6f2-V1 and late born Sp8-V1 interneurons are not, indicating that timing of neurogenesis does not correlate with motoneuron targeting. V1 clades also differ in cell numbers and diversity. Lineage labeling shows that the Foxp2-V1 clade contains over half of all V1 interneurons, provides the largest inhibitory input to motoneuron cell bodies, and includes subgroups that differ in birthdate, location, and proprioceptive input. Notably, one Foxp2-V1 subgroup, defined by postnatal Otp expression, is positioned near the LMC and receives substantial input from proprioceptors, consistent with an involvement in reciprocal inhibitory pathways. Combined tracing of ankle flexor sensory afferents and interneurons monosynaptically connected to ankle extensors confirmed placement of Foxp2-V1 interneurons in reciprocal inhibitory pathways. Our results validate previously proposed V1 clades as unique functional subtypes that differ in circuit placement, with Foxp2-V1 cells forming the most heterogeneous subgroup. We discuss how V1 organizational diversity enables understanding of their roles in motor control, with implications for their diverse ontogenetic and phylogenetic origins.