Sensitivity and kinetics of signal transmission at the first visual synapse differentially impact visually-guided behavior

  1. Ignacio Sarria
  2. Johan Pahlberg
  3. Yan Cao
  4. Alexander V Kolesnikov
  5. Vladimir J Kefalov
  6. Alapakkam P Sampath
  7. Kirill A Martemyanov  Is a corresponding author
  1. The Scripps Research Institute, United States
  2. University of California, Los Angeles, United States
  3. Washington University in St.Louis, United States

Abstract

In the retina, synaptic transmission between photoreceptors and downstream ON-bipolar neurons (ON-BCs) is mediated by a GPCR pathway, which plays an essential role in vision. However, the mechanisms that control signal transmission at this synapse and its relevance to behavior remain poorly understood. In this study we used a genetic system to titrate the rate of GPCR signaling in ON-BC dendrites by varying the concentration of key RGS proteins and measuring the impact on transmission of signal between photoreceptors and ON-BC neurons using electroretinography and single cell recordings. We found that sensitivity, onset timing, and the maximal amplitude of light-evoked responses in rod- and cone-driven ON-BCs are determined by different RGS concentrations. We further show that changes in RGS concentration differentially impact visually guided-behavior mediated by rod and cone ON pathways. These findings illustrate that neuronal circuit properties can be modulated by adjusting parameters of GPCR-based neurotransmission at individual synapses.

Article and author information

Author details

  1. Ignacio Sarria

    Department of Neuroscience, The Scripps Research Institute, Jupiter, United States
    Competing interests
    The authors declare that no competing interests exist.
  2. Johan Pahlberg

    Jules Stein Eye Institute, Department of Ophthalmology, University of California, Los Angeles, Los Angeles, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Yan Cao

    Department of Neuroscience, The Scripps Research Institute, Jupiter, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Alexander V Kolesnikov

    Department of Ophthalmology and Visual Sciences, Washington University in St.Louis, St. Louis, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Vladimir J Kefalov

    Department of Ophthalmology and Visual Sciences, Washington University in St.Louis, St. Louis, United States
    Competing interests
    The authors declare that no competing interests exist.
  6. Alapakkam P Sampath

    Jules Stein Eye Institute, Department of Ophthalmology, University of California, Los Angeles, Los Angeles, United States
    Competing interests
    The authors declare that no competing interests exist.
  7. Kirill A Martemyanov

    Department of Neuroscience, The Scripps Research Institute, Jupiter, United States
    For correspondence
    kirill@scripps.edu
    Competing interests
    The authors declare that no competing interests exist.

Reviewing Editor

  1. Jeremy Nathans, Howard Hughes Medical Institute, Johns Hopkins University School of Medicine, United States

Ethics

Animal experimentation: All procedures were carried out in accordance with the National Institute of Health guidelines and were granted formal approval by the Institutional Animal Care and Use Committees of the Scripps Research Institute (IACUC protocol number 14-001), Washington University (IACUC protocol number 20140236), and the University of Southern California (IACUC protocol number 10890).

Version history

  1. Received: January 6, 2015
  2. Accepted: April 11, 2015
  3. Accepted Manuscript published: April 16, 2015 (version 1)
  4. Version of Record published: April 29, 2015 (version 2)

Copyright

© 2015, Sarria et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,462
    views
  • 299
    downloads
  • 15
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Ignacio Sarria
  2. Johan Pahlberg
  3. Yan Cao
  4. Alexander V Kolesnikov
  5. Vladimir J Kefalov
  6. Alapakkam P Sampath
  7. Kirill A Martemyanov
(2015)
Sensitivity and kinetics of signal transmission at the first visual synapse differentially impact visually-guided behavior
eLife 4:e06358.
https://doi.org/10.7554/eLife.06358

Share this article

https://doi.org/10.7554/eLife.06358

Further reading

    1. Neuroscience
    Alexandra L Jellinger, Rebecca L Suthard ... Steve Ramirez
    Research Article

    Negative memories engage a brain and body-wide stress response in humans that can alter cognition and behavior. Prolonged stress responses induce maladaptive cellular, circuit, and systems-level changes that can lead to pathological brain states and corresponding disorders in which mood and memory are affected. However, it is unclear if repeated activation of cells processing negative memories induces similar phenotypes in mice. In this study, we used an activity-dependent tagging method to access neuronal ensembles and assess their molecular characteristics. Sequencing memory engrams in mice revealed that positive (male-to-female exposure) and negative (foot shock) cells upregulated genes linked to anti- and pro-inflammatory responses, respectively. To investigate the impact of persistent activation of negative engrams, we chemogenetically activated them in the ventral hippocampus over 3 months and conducted anxiety and memory-related tests. Negative engram activation increased anxiety behaviors in both 6- and 14-month-old mice, reduced spatial working memory in older mice, impaired fear extinction in younger mice, and heightened fear generalization in both age groups. Immunohistochemistry revealed changes in microglial and astrocytic structure and number in the hippocampus. In summary, repeated activation of negative memories induces lasting cellular and behavioral abnormalities in mice, offering insights into the negative effects of chronic negative thinking-like behaviors on human health.

    1. Neuroscience
    Alexandra H Leighton, Juliette E Cheyne, Christian Lohmann
    Research Article

    Synaptic inputs to cortical neurons are highly structured in adult sensory systems, such that neighboring synapses along dendrites are activated by similar stimuli. This organization of synaptic inputs, called synaptic clustering, is required for high-fidelity signal processing, and clustered synapses can already be observed before eye opening. However, how clustered inputs emerge during development is unknown. Here, we employed concurrent in vivo whole-cell patch-clamp and dendritic calcium imaging to map spontaneous synaptic inputs to dendrites of layer 2/3 neurons in the mouse primary visual cortex during the second postnatal week until eye opening. We found that the number of functional synapses and the frequency of transmission events increase several fold during this developmental period. At the beginning of the second postnatal week, synapses assemble specifically in confined dendritic segments, whereas other segments are devoid of synapses. By the end of the second postnatal week, just before eye opening, dendrites are almost entirely covered by domains of co-active synapses. Finally, co-activity with their neighbor synapses correlates with synaptic stabilization and potentiation. Thus, clustered synapses form in distinct functional domains presumably to equip dendrites with computational modules for high-capacity sensory processing when the eyes open.