Building accurate sequence-to-affinity models from high-throughput in vitro protein-DNA binding data using FeatureREDUCE

Abstract

Transcription factors are crucial regulators of gene expression. Accurate quantitative definition of their intrinsic DNA binding preferences is critical to understanding their biological function. High-throughput in vitro technology has recently been used to deeply probe the DNA binding specificity of hundreds of eukaryotic transcription factors, yet algorithms for analyzing such data have not yet fully matured. Here we present a general framework (FeatureREDUCE) for building sequence-to-affinity models based on a biophysically interpretable and extensible model of protein-DNA interaction that can account for dependencies between nucleotides within the binding interface or multiple modes of binding. When training on protein binding microarray (PBM) data, we use robust regression and modeling of technology-specific biases to infer specificity models of unprecedented accuracy and precision. We provide quantitative validation of our results by comparing to gold-standard data when available.

Article and author information

Author details

  1. Todd R Riley

    Department of Biological Sciences, Columbia University, New York, United States
    Competing interests
    The authors declare that no competing interests exist.
  2. Allan Lazarovici

    Department of Biological Sciences, Columbia University, New York, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Richard S Mann

    Department of Biochemistry and Molecular Biophysics, Columbia University, New York, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Harmen J Bussemaker

    Department of Biological Sciences, Columbia University, New York, United States
    For correspondence
    hjb2004@columbia.edu
    Competing interests
    The authors declare that no competing interests exist.

Copyright

© 2015, Riley et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,746
    views
  • 380
    downloads
  • 34
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Citations by DOI

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Todd R Riley
  2. Allan Lazarovici
  3. Richard S Mann
  4. Harmen J Bussemaker
(2015)
Building accurate sequence-to-affinity models from high-throughput in vitro protein-DNA binding data using FeatureREDUCE
eLife 4:e06397.
https://doi.org/10.7554/eLife.06397

Share this article

https://doi.org/10.7554/eLife.06397