1. Neuroscience
Download icon

Corelease of acetylcholine and GABA from cholinergic forebrain neurons

  1. Arpiar Saunders
  2. Adam J Granger
  3. Bernardo L Sabatini  Is a corresponding author
  1. Howard Hughes Medical Institute, Harvard Medical School, United States
Research Article
  • Cited 81
  • Views 6,706
  • Annotations
Cite this article as: eLife 2015;4:e06412 doi: 10.7554/eLife.06412

Abstract

Neurotransmitter corelease is emerging as a common theme of central neuromodulatory systems. Though corelease of glutamate or GABA with acetylcholine has been reported within the cholinergic system, the full extent is unknown. To explore synaptic signaling of cholinergic forebrain neurons, we activated choline acetyltransferase expressing neurons using channelrhodopsin while recording post-synaptic currents (PSCs) in layer 1 interneurons. Surprisingly, we observed PSCs mediated by GABAA receptors in addition to nicotinic acetylcholine receptors. Based on PSC latency and pharmacological sensitivity, our results suggest monosynaptic release of both GABA and ACh. Anatomical analysis showed that forebrain cholinergic neurons express the GABA synthetic enzyme Gad2 and the vesicular GABA transporter (Slc32a1). We confirmed the direct release of GABA by knocking out Slc32a1 from cholinergic neurons. Our results identify GABA as an overlooked fast neurotransmitter utilized throughout the forebrain cholinergic system. GABA/ACh corelease may have major implications for modulation of cortical function by cholinergic neurons.

Article and author information

Author details

  1. Arpiar Saunders

    Department of Neurobiology, Howard Hughes Medical Institute, Harvard Medical School, Boston, United States
    Competing interests
    The authors declare that no competing interests exist.
  2. Adam J Granger

    Department of Neurobiology, Howard Hughes Medical Institute, Harvard Medical School, Boston, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Bernardo L Sabatini

    Department of Neurobiology, Howard Hughes Medical Institute, Harvard Medical School, Boston, United States
    For correspondence
    bernardo_sabatini@hms.harvard.edu
    Competing interests
    The authors declare that no competing interests exist.

Ethics

Animal experimentation: All experimental manipulations were performed in accordance with a protocol (#03551) approved by the Harvard Standing Committee on Animal Care following guidelines described in the US National Institutes of Health Guide for the Care and Use of Laboratory Animals.

Reviewing Editor

  1. Sacha B Nelson, Brandeis University, United States

Publication history

  1. Received: January 9, 2015
  2. Accepted: February 26, 2015
  3. Accepted Manuscript published: February 27, 2015 (version 1)
  4. Version of Record published: March 24, 2015 (version 2)

Copyright

© 2015, Saunders et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 6,706
    Page views
  • 1,549
    Downloads
  • 81
    Citations

Article citation count generated by polling the highest count across the following sources: Scopus, Crossref, PubMed Central.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Download citations (links to download the citations from this article in formats compatible with various reference manager tools)

Open citations (links to open the citations from this article in various online reference manager services)

Further reading

    1. Computational and Systems Biology
    2. Neuroscience
    Daniël M Pelt
    Insight

    Using multiple human annotators and ensembles of trained networks can improve the performance of deep-learning methods in research.

    1. Neuroscience
    Ashley L Kalinski et al.
    Research Article

    Sciatic nerve crush injury triggers sterile inflammation within the distal nerve and axotomized dorsal root ganglia (DRGs). Granulocytes and pro-inflammatory Ly6Chigh monocytes infiltrate the nerve first, and rapidly give way to Ly6Cnegative inflammation-resolving macrophages. In axotomized DRGs, few hematogenous leukocytes are detected and resident macrophages acquire a ramified morphology. Single-cell RNA-sequencing of injured sciatic nerve identifies five macrophage subpopulations, repair Schwann cells, and mesenchymal precursor cells. Macrophages at the nerve crush site are molecularly distinct from macrophages associated with Wallerian degeneration. In the injured nerve, macrophages 'eat' apoptotic leukocytes, a process called efferocytosis, and thereby promote an anti-inflammatory milieu. Myeloid cells in the injured nerve, but not axotomized DRGs, strongly express receptors for the cytokine GM-CSF. In GM-CSF deficient (Csf2-/-) mice, inflammation resolution is delayed and conditioning-lesion induced regeneration of DRG neuron central axons is abolished. Thus, carefully orchestrated inflammation resolution in the nerve is required for conditioning-lesion induced neurorepair.