Mass enhances speed but diminishes turn capacity in terrestrial pursuit predators

  1. Rory P Wilson  Is a corresponding author
  2. Iwan W Griffiths
  3. Michael GL Mills
  4. Chris Carbone
  5. John W Wilson
  6. David M Scantlebury
  1. Swansea University, Wales
  2. The Lewis Foundation, South Africa
  3. Zoological Society of London, United Kingdom
  4. University of Pretoria, South Africa
  5. Queen's University Belfast, United Kingdom

Abstract

The dynamics of predator-prey pursuit appears complex, making the development of a framework explaining predator and prey strategies problematic. We develop a model for terrestrial, cursorial predators to examine how animal mass modulates predator and prey trajectories and affects best strategies for both parties. We incorporated the maximum speed-mass relationship with an explanation of why larger animals should have greater turn radii; the forces needed to turn scale linearly with mass whereas the maximum forces an animal can exert scale to a 2/3 power law. This clarifies why in a meta-analysis, we found a preponderance of predator/prey mass ratios that minimized the turn radii of predators compared to their prey. It also explained why acceleration data from wild cheetahs pursuing different prey showed different cornering behaviour with prey type. The outcome of predator prey pursuits thus depends critically on mass effects and the ability of animals to time turns precisely.

Article and author information

Author details

  1. Rory P Wilson

    Swansea Lab for Animal Movement, Department of Biosciences, College of Science, Swansea University, Swansea, Wales
    For correspondence
    r.p.wilson@swansea.ac.uk
    Competing interests
    The authors declare that no competing interests exist.
  2. Iwan W Griffiths

    College of Engineering, Swansea University, Swansea, Wales
    Competing interests
    The authors declare that no competing interests exist.
  3. Michael GL Mills

    The Lewis Foundation, Johannesburg, South Africa
    Competing interests
    The authors declare that no competing interests exist.
  4. Chris Carbone

    Institute of Zoology, Zoological Society of London, London, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  5. John W Wilson

    Department of Zoology and Entomology, University of Pretoria, Pretoria, South Africa
    Competing interests
    The authors declare that no competing interests exist.
  6. David M Scantlebury

    School of Biological Sciences, Institute for Global Food Security, Queen's University Belfast, Belfast, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.

Ethics

Animal experimentation: Permission and ethical clearance were granted by SANParks ethical and research committees to conduct the field research, Project Number 2006-05-10 MGMI. The study was performed in accordance with the commendations in the Guide for the Care and Use of Laboratory Animals of the National Institutes of Health. All immobilizationand collaring of wild animals was conducted by a registered individual (GM), under the direction of a SANParks veterinarian.

Copyright

© 2015, Wilson et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,917
    views
  • 320
    downloads
  • 47
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Rory P Wilson
  2. Iwan W Griffiths
  3. Michael GL Mills
  4. Chris Carbone
  5. John W Wilson
  6. David M Scantlebury
(2015)
Mass enhances speed but diminishes turn capacity in terrestrial pursuit predators
eLife 4:e06487.
https://doi.org/10.7554/eLife.06487

Share this article

https://doi.org/10.7554/eLife.06487

Further reading

    1. Ecology
    Mathilde Delacoux, Fumihiro Kano
    Research Article

    During collective vigilance, it is commonly assumed that individual animals compromise their feeding time to be vigilant against predators, benefiting the entire group. One notable issue with this assumption concerns the unclear nature of predator ‘detection’, particularly in terms of vision. It remains uncertain how a vigilant individual utilizes its high-acuity vision (such as the fovea) to detect a predator cue and subsequently guide individual and collective escape responses. Using fine-scale motion-capture technologies, we tracked the head and body orientations of pigeons (hence reconstructed their visual fields and foveal projections) foraging in a flock during simulated predator attacks. Pigeons used their fovea to inspect predator cues. Earlier foveation on a predator cue was linked to preceding behaviors related to vigilance and feeding, such as head-up or down positions, head-scanning, and food-pecking. Moreover, earlier foveation predicted earlier evasion flights at both the individual and collective levels. However, we also found that relatively long delay between their foveation and escape responses in individuals obscured the relationship between these two responses. While our results largely support the existing assumptions about vigilance, they also underscore the importance of considering vision and addressing the disparity between detection and escape responses in future research.

    1. Ecology
    Elham Nourani, Louise Faure ... Kamran Safi
    Research Article

    The heterogeneity of the physical environment determines the cost of transport for animals, shaping their energy landscape. Animals respond to this energy landscape by adjusting their distribution and movement to maximize gains and reduce costs. Much of our knowledge about energy landscape dynamics focuses on factors external to the animal, particularly the spatio-temporal variations of the environment. However, an animal’s internal state can significantly impact its ability to perceive and utilize available energy, creating a distinction between the ‘fundamental’ and the ‘realized’ energy landscapes. Here, we show that the realized energy landscape varies along the ontogenetic axis. Locomotor and cognitive capabilities of individuals change over time, especially during the early life stages. We investigate the development of the realized energy landscape in the Central European Alpine population of the golden eagle Aquila chrysaetos, a large predator that requires negotiating the atmospheric environment to achieve energy-efficient soaring flight. We quantified weekly energy landscapes using environmental features for 55 juvenile golden eagles, demonstrating that energetic costs of traversing the landscape decreased with age. Consequently, the potentially flyable area within the Alpine region increased 2170-fold during their first three years of independence. Our work contributes to a predictive understanding of animal movement by presenting ontogeny as a mechanism shaping the realized energy landscape.