G-protein coupled receptors regulate autophagy by ZBTB16-mediated ubiquitination and proteasomal degradation of Atg14L

  1. Tao Zhang
  2. Kangyun Dong
  3. Wei Liang
  4. Daichao Xu
  5. Hongguang Xia
  6. Jiefei Geng
  7. Ayaz Najafov
  8. Min Liu
  9. Yanxia Li
  10. Xiaoran Han
  11. Juan Xiao
  12. Zhenzhen Jin
  13. Ting Peng
  14. Yang Gao
  15. Yu Cai
  16. Chunting Qi
  17. Qing Zhang
  18. Anyang Sun
  19. Marta Lipinski
  20. Hong Zhu
  21. Yue Xiong
  22. Pier Paolo Pandolfi
  23. He Li
  24. Qiang Yu
  25. Junying Yuan  Is a corresponding author
  1. Chinese Academy of Sciences, China
  2. Harvard Medical School, United States
  3. Fudan University, China
  4. Huazhong University of Science and Technology, China
  5. University of Maryland School of Medicine, United States
  6. University of North Carolina at Chapel Hill, United States

Abstract

Autophagy is an important intracellular catabolic mechanism involved in the removal of misfolded proteins. Atg14L, the mammalian orthologue of Atg14 in yeast and a critical regulator of autophagy, mediates the production PtdIns3P to initiate the formation of autophagosomes. However, it is not clear how Atg14L is regulated. Here we demonstrate that ubiquitination and degradation of Atg14L is controlled by ZBTB16-Cullin3-Roc1 E3 ubiquitin ligase complex. Furthermore, we show that a wide range of GPCR ligands and agonists regulate the levels of Atg14L through ZBTB16. In addition, we show that the activation of autophagy by pharmacological inhibition of GPCR reduces the accumulation of misfolded proteins and protects against behavior dysfunction in a mouse model of Huntington's disease. Our study demonstrates a common molecular mechanism by which the activation of GPCRs leads to the suppression of autophagy and a pharmacological strategy to activate autophagy in the CNS for the treatment of neurodegenerative diseases.

Article and author information

Author details

  1. Tao Zhang

    Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, China
    Competing interests
    The authors declare that no competing interests exist.
  2. Kangyun Dong

    Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, China
    Competing interests
    The authors declare that no competing interests exist.
  3. Wei Liang

    Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, China
    Competing interests
    The authors declare that no competing interests exist.
  4. Daichao Xu

    Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, China
    Competing interests
    The authors declare that no competing interests exist.
  5. Hongguang Xia

    Department of Cell Biology, Harvard Medical School, Boston, United States
    Competing interests
    The authors declare that no competing interests exist.
  6. Jiefei Geng

    Department of Cell Biology, Harvard Medical School, Boston, United States
    Competing interests
    The authors declare that no competing interests exist.
  7. Ayaz Najafov

    Department of Cell Biology, Harvard Medical School, Boston, United States
    Competing interests
    The authors declare that no competing interests exist.
  8. Min Liu

    Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, China
    Competing interests
    The authors declare that no competing interests exist.
  9. Yanxia Li

    Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, China
    Competing interests
    The authors declare that no competing interests exist.
  10. Xiaoran Han

    Molecular and Cell Biology Lab, Institutes of Biomedical Sciences, Fudan University, Shanghai, China
    Competing interests
    The authors declare that no competing interests exist.
  11. Juan Xiao

    Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, China
    Competing interests
    The authors declare that no competing interests exist.
  12. Zhenzhen Jin

    Department of Histology and Embryology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
    Competing interests
    The authors declare that no competing interests exist.
  13. Ting Peng

    Department of Histology and Embryology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
    Competing interests
    The authors declare that no competing interests exist.
  14. Yang Gao

    Department of Histology and Embryology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
    Competing interests
    The authors declare that no competing interests exist.
  15. Yu Cai

    Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, China
    Competing interests
    The authors declare that no competing interests exist.
  16. Chunting Qi

    Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
    Competing interests
    The authors declare that no competing interests exist.
  17. Qing Zhang

    Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
    Competing interests
    The authors declare that no competing interests exist.
  18. Anyang Sun

    Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, China
    Competing interests
    The authors declare that no competing interests exist.
  19. Marta Lipinski

    Department of Anesthesiology, University of Maryland School of Medicine, Baltimore, United States
    Competing interests
    The authors declare that no competing interests exist.
  20. Hong Zhu

    Department of Cell Biology, Harvard Medical School, Boston, United States
    Competing interests
    The authors declare that no competing interests exist.
  21. Yue Xiong

    Lineberger Comprehensive Cancer Center, Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, United States
    Competing interests
    The authors declare that no competing interests exist.
  22. Pier Paolo Pandolfi

    Cancer Research Institute, Beth Israel Deaconess Cancer Center, Harvard Medical School, Boston, United States
    Competing interests
    The authors declare that no competing interests exist.
  23. He Li

    Department of Histology and Embryology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
    Competing interests
    The authors declare that no competing interests exist.
  24. Qiang Yu

    Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
    Competing interests
    The authors declare that no competing interests exist.
  25. Junying Yuan

    Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, China
    For correspondence
    jyuan@hms.harvard.edu
    Competing interests
    The authors declare that no competing interests exist.

Reviewing Editor

  1. Noboru Mizushima, The University of Tokyo, Japan

Ethics

Animal experimentation: All animal experiments were carried out in accordance with an approved protocol by Shanghai Institute of Materia Medica Institutional Animal Care and Use Committee (IACUC).The protocol was approved by the research ethics committee of Chinese Academy of Sciences(Permit Number:2011-8-YQ-01).

Version history

  1. Received: January 28, 2015
  2. Accepted: March 27, 2015
  3. Accepted Manuscript published: March 30, 2015 (version 1)
  4. Version of Record published: May 6, 2015 (version 2)

Copyright

© 2015, Zhang et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 3,517
    views
  • 1,048
    downloads
  • 79
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Tao Zhang
  2. Kangyun Dong
  3. Wei Liang
  4. Daichao Xu
  5. Hongguang Xia
  6. Jiefei Geng
  7. Ayaz Najafov
  8. Min Liu
  9. Yanxia Li
  10. Xiaoran Han
  11. Juan Xiao
  12. Zhenzhen Jin
  13. Ting Peng
  14. Yang Gao
  15. Yu Cai
  16. Chunting Qi
  17. Qing Zhang
  18. Anyang Sun
  19. Marta Lipinski
  20. Hong Zhu
  21. Yue Xiong
  22. Pier Paolo Pandolfi
  23. He Li
  24. Qiang Yu
  25. Junying Yuan
(2015)
G-protein coupled receptors regulate autophagy by ZBTB16-mediated ubiquitination and proteasomal degradation of Atg14L
eLife 4:e06734.
https://doi.org/10.7554/eLife.06734

Share this article

https://doi.org/10.7554/eLife.06734

Further reading

    1. Cell Biology
    2. Computational and Systems Biology
    N Suhas Jagannathan, Javier Yu Peng Koh ... Lisa Tucker-Kellogg
    Research Article

    Bats have unique characteristics compared to other mammals, including increased longevity and higher resistance to cancer and infectious disease. While previous studies have analyzed the metabolic requirements for flight, it is still unclear how bat metabolism supports these unique features, and no study has integrated metabolomics, transcriptomics, and proteomics to characterize bat metabolism. In this work, we performed a multi-omics data analysis using a computational model of metabolic fluxes to identify fundamental differences in central metabolism between primary lung fibroblast cell lines from the black flying fox fruit bat (Pteropus alecto) and human. Bat cells showed higher expression levels of Complex I components of electron transport chain (ETC), but, remarkably, a lower rate of oxygen consumption. Computational modeling interpreted these results as indicating that Complex II activity may be low or reversed, similar to an ischemic state. An ischemic-like state of bats was also supported by decreased levels of central metabolites and increased ratios of succinate to fumarate in bat cells. Ischemic states tend to produce reactive oxygen species (ROS), which would be incompatible with the longevity of bats. However, bat cells had higher antioxidant reservoirs (higher total glutathione and higher ratio of NADPH to NADP) despite higher mitochondrial ROS levels. In addition, bat cells were more resistant to glucose deprivation and had increased resistance to ferroptosis, one of the characteristics of which is oxidative stress. Thus, our studies revealed distinct differences in the ETC regulation and metabolic stress responses between human and bat cells.

    1. Cell Biology
    2. Developmental Biology
    Filip Knop, Apolena Zounarova ... Marie Macůrková
    Research Article

    During Caenorhabditis elegans development, multiple cells migrate long distances or extend processes to reach their final position and/or attain proper shape. The Wnt signalling pathway stands out as one of the major coordinators of cell migration or cell outgrowth along the anterior-posterior body axis. The outcome of Wnt signalling is fine-tuned by various mechanisms including endocytosis. In this study, we show that SEL-5, the C. elegans orthologue of mammalian AP2-associated kinase AAK1, acts together with the retromer complex as a positive regulator of EGL-20/Wnt signalling during the migration of QL neuroblast daughter cells. At the same time, SEL-5 in cooperation with the retromer complex is also required during excretory canal cell outgrowth. Importantly, SEL-5 kinase activity is not required for its role in neuronal migration or excretory cell outgrowth, and neither of these processes is dependent on DPY-23/AP2M1 phosphorylation. We further establish that the Wnt proteins CWN-1 and CWN-2 together with the Frizzled receptor CFZ-2 positively regulate excretory cell outgrowth, while LIN-44/Wnt and LIN-17/Frizzled together generate a stop signal inhibiting its extension.