Interneurons and oligodendrocyte progenitors form a structured synaptic network in the developing neocortex

  1. David Orduz
  2. Paloma P Maldonado
  3. Maddalena Balia
  4. Mateo Vélez-Fort
  5. Vincent de Sars
  6. Yuchio Yanagawa
  7. Valentina Emiliani
  8. Maria Cecilia Angulo  Is a corresponding author
  1. Institut national de la santé et de la recherche médicale, France
  2. The Royal Academy of Arts and Sciences, Netherlands
  3. National Institute for Medical Research, United Kingdom
  4. Université Paris Descartes, Sorbonne Paris Cité, France
  5. Gunma University Graduate School of Medicine, Japan

Abstract

NG2 cells, oligodendrocyte progenitors, receive a major synaptic input from interneurons in the developing neocortex. It is presumed that these precursors integrate cortical networks where they act as sensors of neuronal activity. We show that NG2 cells of the developing somatosensory cortex form a transient and structured synaptic network with interneurons that follows its own rules of connectivity. Fast-spiking interneurons, highly connected to NG2 cells, target proximal subcellular domains containing GABAA receptors with γ2 subunits. Conversely, non-fast-spiking interneurons, poorly connected with these progenitors, target distal sites lacking this subunit. In the network, interneuron-NG2 cell connectivity maps exhibit a local spatial arrangement reflecting innervation only by nearest interneurons. This microcircuit architecture shows a connectivity peak at PN10, coinciding with a switch to massive oligodendrocyte differentiation. Hence, GABAergic innervation of NG2 cells is temporally and spatially regulated from the subcellular to the network level in coordination with the onset of oligodendrogenesis.

Article and author information

Author details

  1. David Orduz

    INSERM U1128, Neurophysiology and New Microscopies Laboratory, Institut national de la santé et de la recherche médicale, Paris, France
    Competing interests
    The authors declare that no competing interests exist.
  2. Paloma P Maldonado

    Netherlands Institute for Neuroscience, The Royal Academy of Arts and Sciences, Amsterdam, Netherlands
    Competing interests
    The authors declare that no competing interests exist.
  3. Maddalena Balia

    INSERM U1128, Neurophysiology and New Microscopies Laboratory, Institut national de la santé et de la recherche médicale, Paris, France
    Competing interests
    The authors declare that no competing interests exist.
  4. Mateo Vélez-Fort

    Division of Neurophysiology, National Institute for Medical Research, London, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  5. Vincent de Sars

    Université Paris Descartes, Sorbonne Paris Cité, Paris, France
    Competing interests
    The authors declare that no competing interests exist.
  6. Yuchio Yanagawa

    Department of Genetic and Behavioral Neuroscience, Gunma University Graduate School of Medicine, Maebashi, Japan
    Competing interests
    The authors declare that no competing interests exist.
  7. Valentina Emiliani

    Université Paris Descartes, Sorbonne Paris Cité, Paris, France
    Competing interests
    The authors declare that no competing interests exist.
  8. Maria Cecilia Angulo

    INSERM U1128, Neurophysiology and New Microscopies Laboratory, Institut national de la santé et de la recherche médicale, Paris, France
    For correspondence
    maria-cecilia.angulo@parisdescartes.fr
    Competing interests
    The authors declare that no competing interests exist.

Ethics

Animal experimentation: All experiments followed European Union and institutional guidelines for the care and use of laboratory of the INSERM. All of the animals were handled according to approved institutional animal care and use protocols of the University Paris Descartes. The protocol was approved by the Committee on the Ethics of Animal Experiments of the University Paris Descartes (Permit Number: CEEA34.MCA.070.12). Every effort was made to minimize suffering.

Copyright

© 2015, Orduz et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. David Orduz
  2. Paloma P Maldonado
  3. Maddalena Balia
  4. Mateo Vélez-Fort
  5. Vincent de Sars
  6. Yuchio Yanagawa
  7. Valentina Emiliani
  8. Maria Cecilia Angulo
(2015)
Interneurons and oligodendrocyte progenitors form a structured synaptic network in the developing neocortex
eLife 4:e06953.
https://doi.org/10.7554/eLife.06953

Share this article

https://doi.org/10.7554/eLife.06953

Further reading

    1. Neuroscience
    Gergely F Turi, Sasa Teng ... Yueqing Peng
    Research Article

    Synchronous neuronal activity is organized into neuronal oscillations with various frequency and time domains across different brain areas and brain states. For example, hippocampal theta, gamma, and sharp wave oscillations are critical for memory formation and communication between hippocampal subareas and the cortex. In this study, we investigated the neuronal activity of the dentate gyrus (DG) with optical imaging tools during sleep-wake cycles in mice. We found that the activity of major glutamatergic cell populations in the DG is organized into infraslow oscillations (0.01–0.03 Hz) during NREM sleep. Although the DG is considered a sparsely active network during wakefulness, we found that 50% of granule cells and about 25% of mossy cells exhibit increased activity during NREM sleep, compared to that during wakefulness. Further experiments revealed that the infraslow oscillation in the DG was correlated with rhythmic serotonin release during sleep, which oscillates at the same frequency but in an opposite phase. Genetic manipulation of 5-HT receptors revealed that this neuromodulatory regulation is mediated by Htr1a receptors and the knockdown of these receptors leads to memory impairment. Together, our results provide novel mechanistic insights into how the 5-HT system can influence hippocampal activity patterns during sleep.

    1. Neuroscience
    Ulrike Pech, Jasper Janssens ... Patrik Verstreken
    Research Article

    The classical diagnosis of Parkinsonism is based on motor symptoms that are the consequence of nigrostriatal pathway dysfunction and reduced dopaminergic output. However, a decade prior to the emergence of motor issues, patients frequently experience non-motor symptoms, such as a reduced sense of smell (hyposmia). The cellular and molecular bases for these early defects remain enigmatic. To explore this, we developed a new collection of five fruit fly models of familial Parkinsonism and conducted single-cell RNA sequencing on young brains of these models. Interestingly, cholinergic projection neurons are the most vulnerable cells, and genes associated with presynaptic function are the most deregulated. Additional single nucleus sequencing of three specific brain regions of Parkinson’s disease patients confirms these findings. Indeed, the disturbances lead to early synaptic dysfunction, notably affecting cholinergic olfactory projection neurons crucial for olfactory function in flies. Correcting these defects specifically in olfactory cholinergic interneurons in flies or inducing cholinergic signaling in Parkinson mutant human induced dopaminergic neurons in vitro using nicotine, both rescue age-dependent dopaminergic neuron decline. Hence, our research uncovers that one of the earliest indicators of disease in five different models of familial Parkinsonism is synaptic dysfunction in higher-order cholinergic projection neurons and this contributes to the development of hyposmia. Furthermore, the shared pathways of synaptic failure in these cholinergic neurons ultimately contribute to dopaminergic dysfunction later in life.