A mex3 homolog is required for differentiation during planarian stem cell lineage development

  1. Shu Jun Zhu
  2. Stephanie E Hallows
  3. Ko W Currie
  4. ChangJiang Xu
  5. Bret J Pearson  Is a corresponding author
  1. The Hospital for Sick Children, Canada
  2. Terrence Donnelly Centre for Cellular and Biomedical Research, Canada

Abstract

Neoblasts are adult stem cells (ASCs) in planarians that sustain cell replacement during homeostasis and regeneration of any missing tissue. While numerous studies have examined genes underlying neoblast pluripotency, molecular pathways driving postmitotic fates remain poorly defined. Here we used transcriptional profiling of irradiation-sensitive and -insensitive cell populations and RNA interference (RNAi) functional screening to uncover markers and regulators of postmitotic progeny. We identified 32 new markers distinguishing two main epithelial progenitor populations, and a planarian homolog to the MEX3 RNA-binding protein (Smed-mex3-1) as a key regulator of lineage progression. mex3-1 was required for generating differentiated cells of multiple lineages, while restricting the size of the stem cell compartment. We also demonstrated the utility of using mex3-1(RNAi) animals to identify additional progenitor markers. These results identified mex3-1 as a cell fate regulator, broadly required for differentiation, and suggest that mex3-1 helps mediate the balance between ASC self-renewal and commitment.

Article and author information

Author details

  1. Shu Jun Zhu

    Program in Developmental and Stem Cell Biology, The Hospital for Sick Children, Toronto, Canada
    Competing interests
    The authors declare that no competing interests exist.
  2. Stephanie E Hallows

    Program in Developmental and Stem Cell Biology, The Hospital for Sick Children, Toronto, Canada
    Competing interests
    The authors declare that no competing interests exist.
  3. Ko W Currie

    Program in Developmental and Stem Cell Biology, The Hospital for Sick Children, Toronto, Canada
    Competing interests
    The authors declare that no competing interests exist.
  4. ChangJiang Xu

    Terrence Donnelly Centre for Cellular and Biomedical Research, Toronto, Canada
    Competing interests
    The authors declare that no competing interests exist.
  5. Bret J Pearson

    Program in Developmental and Stem Cell Biology, The Hospital for Sick Children, Toronto, Canada
    For correspondence
    bret.pearson@utoronto.ca
    Competing interests
    The authors declare that no competing interests exist.

Reviewing Editor

  1. Marianne E Bronner, California Institute of Technology, United States

Version history

  1. Received: February 14, 2015
  2. Accepted: June 25, 2015
  3. Accepted Manuscript published: June 26, 2015 (version 1)
  4. Version of Record published: July 20, 2015 (version 2)

Copyright

© 2015, Zhu et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 3,595
    views
  • 668
    downloads
  • 79
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Shu Jun Zhu
  2. Stephanie E Hallows
  3. Ko W Currie
  4. ChangJiang Xu
  5. Bret J Pearson
(2015)
A mex3 homolog is required for differentiation during planarian stem cell lineage development
eLife 4:e07025.
https://doi.org/10.7554/eLife.07025

Share this article

https://doi.org/10.7554/eLife.07025

Further reading

    1. Neuroscience
    2. Stem Cells and Regenerative Medicine
    Junjun Yao, Shaoxing Dai ... Tianqing Li
    Research Article

    While accumulated publications support the existence of neurogenesis in the adult human hippocampus, the homeostasis and developmental potentials of neural stem cells (NSCs) under different contexts remain unclear. Based on our generated single-nucleus atlas of the human hippocampus across neonatal, adult, aging, and injury, we dissected the molecular heterogeneity and transcriptional dynamics of human hippocampal NSCs under different contexts. We further identified new specific neurogenic lineage markers that overcome the lack of specificity found in some well-known markers. Based on developmental trajectory and molecular signatures, we found that a subset of NSCs exhibit quiescent properties after birth, and most NSCs become deep quiescence during aging. Furthermore, certain deep quiescent NSCs are reactivated following stroke injury. Together, our findings provide valuable insights into the development, aging, and reactivation of the human hippocampal NSCs, and help to explain why adult hippocampal neurogenesis is infrequently observed in humans.

    1. Stem Cells and Regenerative Medicine
    Magali Seguret, Patricia Davidson ... Jean-Sébastien Hulot
    Research Article

    We developed a 96-well plate assay which allows fast, reproducible, and high-throughput generation of 3D cardiac rings around a deformable optically transparent hydrogel (polyethylene glycol [PEG]) pillar of known stiffness. Human induced pluripotent stem cell-derived cardiomyocytes, mixed with normal human adult dermal fibroblasts in an optimized 3:1 ratio, self-organized to form ring-shaped cardiac constructs. Immunostaining showed that the fibroblasts form a basal layer in contact with the glass, stabilizing the muscular fiber above. Tissues started contracting around the pillar at D1 and their fractional shortening increased until D7, reaching a plateau at 25±1%, that was maintained up to 14 days. The average stress, calculated from the compaction of the central pillar during contractions, was 1.4±0.4 mN/mm2. The cardiac constructs recapitulated expected inotropic responses to calcium and various drugs (isoproterenol, verapamil) as well as the arrhythmogenic effects of dofetilide. This versatile high-throughput assay allows multiple in situ mechanical and structural readouts.