A mex3 homolog is required for differentiation during planarian stem cell lineage development

  1. Shu Jun Zhu
  2. Stephanie E Hallows
  3. Ko W Currie
  4. ChangJiang Xu
  5. Bret J Pearson  Is a corresponding author
  1. The Hospital for Sick Children, Canada
  2. Terrence Donnelly Centre for Cellular and Biomedical Research, Canada

Abstract

Neoblasts are adult stem cells (ASCs) in planarians that sustain cell replacement during homeostasis and regeneration of any missing tissue. While numerous studies have examined genes underlying neoblast pluripotency, molecular pathways driving postmitotic fates remain poorly defined. Here we used transcriptional profiling of irradiation-sensitive and -insensitive cell populations and RNA interference (RNAi) functional screening to uncover markers and regulators of postmitotic progeny. We identified 32 new markers distinguishing two main epithelial progenitor populations, and a planarian homolog to the MEX3 RNA-binding protein (Smed-mex3-1) as a key regulator of lineage progression. mex3-1 was required for generating differentiated cells of multiple lineages, while restricting the size of the stem cell compartment. We also demonstrated the utility of using mex3-1(RNAi) animals to identify additional progenitor markers. These results identified mex3-1 as a cell fate regulator, broadly required for differentiation, and suggest that mex3-1 helps mediate the balance between ASC self-renewal and commitment.

Article and author information

Author details

  1. Shu Jun Zhu

    Program in Developmental and Stem Cell Biology, The Hospital for Sick Children, Toronto, Canada
    Competing interests
    The authors declare that no competing interests exist.
  2. Stephanie E Hallows

    Program in Developmental and Stem Cell Biology, The Hospital for Sick Children, Toronto, Canada
    Competing interests
    The authors declare that no competing interests exist.
  3. Ko W Currie

    Program in Developmental and Stem Cell Biology, The Hospital for Sick Children, Toronto, Canada
    Competing interests
    The authors declare that no competing interests exist.
  4. ChangJiang Xu

    Terrence Donnelly Centre for Cellular and Biomedical Research, Toronto, Canada
    Competing interests
    The authors declare that no competing interests exist.
  5. Bret J Pearson

    Program in Developmental and Stem Cell Biology, The Hospital for Sick Children, Toronto, Canada
    For correspondence
    bret.pearson@utoronto.ca
    Competing interests
    The authors declare that no competing interests exist.

Copyright

© 2015, Zhu et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 3,661
    views
  • 676
    downloads
  • 86
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Shu Jun Zhu
  2. Stephanie E Hallows
  3. Ko W Currie
  4. ChangJiang Xu
  5. Bret J Pearson
(2015)
A mex3 homolog is required for differentiation during planarian stem cell lineage development
eLife 4:e07025.
https://doi.org/10.7554/eLife.07025

Share this article

https://doi.org/10.7554/eLife.07025

Further reading

    1. Stem Cells and Regenerative Medicine
    Wei Zhou, Kezhang He ... Sheng Ding
    Research Article

    Adult mammals, unlike some lower organisms, lack the ability to regenerate damaged hearts through cardiomyocytes (CMs) dedifferentiation into cells with regenerative capacity. Developing conditions to induce such naturally unavailable cells with potential to proliferate and differentiate into CMs, that is, regenerative cardiac cells (RCCs), in mammals will provide new insights and tools for heart regeneration research. In this study, we demonstrate that a two-compound combination, CHIR99021 and A-485 (2C), effectively induces RCCs from human embryonic stem cell-derived TNNT2+ CMs in vitro, as evidenced by lineage tracing experiments. Functional analysis shows that these RCCs express a broad spectrum of cardiogenesis genes and have the potential to differentiate into functional CMs, endothelial cells, and smooth muscle cells. Importantly, similar results were observed in neonatal rat CMs both in vitro and in vivo. Remarkably, administering 2C in adult mouse hearts significantly enhances survival and improves heart function post-myocardial infarction. Mechanistically, CHIR99021 is crucial for the transcriptional and epigenetic activation of genes essential for RCC development, while A-485 primarily suppresses H3K27Ac and particularly H3K9Ac in CMs. Their synergistic effect enhances these modifications on RCC genes, facilitating the transition from CMs to RCCs. Therefore, our findings demonstrate the feasibility and reveal the mechanisms of pharmacological induction of RCCs from endogenous CMs, which could offer a promising regenerative strategy to repair injured hearts.

    1. Stem Cells and Regenerative Medicine
    Simon Perrin, Maria Ethel ... Céline Colnot
    Tools and Resources

    Bone regeneration is mediated by skeletal stem/progenitor cells (SSPCs) that are mainly recruited from the periosteum after bone injury. The composition of the periosteum and the steps of SSPC activation and differentiation remain poorly understood. Here, we generated a single-nucleus atlas of the periosteum at steady state and of the fracture site during the early stages of bone repair (https://fracture-repair-atlas.cells.ucsc.edu). We identified periosteal SSPCs expressing stemness markers (Pi16 and Ly6a/SCA1) and responding to fracture by adopting an injury-induced fibrogenic cell (IIFC) fate, prior to undergoing osteogenesis or chondrogenesis. We identified distinct gene cores associated with IIFCs and their engagement into osteogenesis and chondrogenesis involving Notch, Wnt, and the circadian clock signaling, respectively. Finally, we show that IIFCs are the main source of paracrine signals in the fracture environment, suggesting a crucial paracrine role of this transient IIFC population during fracture healing. Overall, our study provides a complete temporal topography of the early stages of fracture healing and the dynamic response of periosteal SSPCs to injury, redefining our knowledge of bone regeneration.