1. Ecology
Download icon

Parental effects alter the adaptive value of an adult behavioural trait

  1. RM Kilner  Is a corresponding author
  2. G Boncoraglio
  3. JM Henshaw
  4. BJM Jarrett
  5. O De Gasperin
  6. A Attisano
  7. H Kokko
  1. University of Cambridge, United Kingdom
  2. Australian National University, Australia
  3. University of Zürich, Switzerland
Research Article
  • Cited 20
  • Views 2,032
  • Annotations
Cite this article as: eLife 2015;4:e07340 doi: 10.7554/eLife.07340

Abstract

The parents' phenotype, or the environment they create for their young, can have long-lasting effects on their offspring, with profound evolutionary consequences. Yet virtually no work has considered how such parental effects might change the adaptive value of behavioural traits expressed by offspring upon reaching adulthood. To address this problem, we combined experiments on burying beetles (Nicrophorus vespilloides) with theoretical modelling, and focussed on one adult behavioural trait in particular: the supply of parental care. We manipulated the early life environment and measured the fitness payoffs associated with the supply of parental care when larvae reached maturity. We found that (1) adults that received low levels of care as larvae were less successful at raising larger broods, and suffered greater mortality as a result: they were low quality parents. Furthermore (2) high quality males that raised offspring with low quality females subsequently suffered greater mortality than brothers of equivalent quality, which reared larvae with higher quality females. Our analyses identify three general ways in which parental effects can change the adaptive value of an adult behavioural trait: by influencing the associated fitness benefits and costs; by consequently changing the evolutionary outcome of social interactions; and by modifying the evolutionarily stable expression of behavioural traits that are themselves parental effects.

Article and author information

Author details

  1. RM Kilner

    Department of Zoology, University of Cambridge, Cambridge, United Kingdom
    For correspondence
    rmk1002@cam.ac.uk
    Competing interests
    The authors declare that no competing interests exist.
  2. G Boncoraglio

    Department of Zoology, University of Cambridge, Cambridge, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  3. JM Henshaw

    Research School of Biology, Australian National University, Canberra, Australia
    Competing interests
    The authors declare that no competing interests exist.
  4. BJM Jarrett

    Department of Zoology, University of Cambridge, Cambridge, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  5. O De Gasperin

    Department of Zoology, University of Cambridge, Cambridge, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  6. A Attisano

    Department of Zoology, University of Cambridge, Cambridge, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  7. H Kokko

    Institute of Evolutionary Biology and Environmental Studies, University of Zürich, Zürich, Switzerland
    Competing interests
    The authors declare that no competing interests exist.

Reviewing Editor

  1. Carl T Bergstrom, University of Washington, United States

Publication history

  1. Received: March 5, 2015
  2. Accepted: September 14, 2015
  3. Accepted Manuscript published: September 22, 2015 (version 1)
  4. Version of Record published: October 22, 2015 (version 2)

Copyright

© 2015, Kilner et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,032
    Page views
  • 383
    Downloads
  • 20
    Citations

Article citation count generated by polling the highest count across the following sources: Crossref, Scopus, PubMed Central.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Download citations (links to download the citations from this article in formats compatible with various reference manager tools)

Open citations (links to open the citations from this article in various online reference manager services)

Further reading

    1. Ecology
    2. Plant Biology
    Emanuela Cristiani et al.
    Research Article

    Forager focus on wild cereal plants has been documented in the core zone of domestication in southwestern Asia, while evidence for forager use of wild grass grains remains sporadic elsewhere. In this paper, we present starch grain and phytolith analyses of dental calculus from 60 Mesolithic and Early Neolithic individuals from five sites in the Danube Gorges of the central Balkans. This zone was inhabited by likely complex Holocene foragers for several millennia before the appearance of the first farmers ~6200 cal BC. We also analyzed forager ground stone tools for evidence of plant processing. Our results based on the study of dental calculus show that certain species of Poaceae (species of the genus Aegilops) were used since the Early Mesolithic, while ground stone tools exhibit traces of a developed grass grain processing technology. The adoption of domesticated plants in this region after ~6500 cal BC might have been eased by the existing familiarity with wild cereals.

    1. Cell Biology
    2. Ecology
    Basile Jacquel et al.
    Tools and Resources Updated

    The life cycle of microorganisms is associated with dynamic metabolic transitions and complex cellular responses. In yeast, how metabolic signals control the progressive choreography of structural reorganizations observed in quiescent cells during a natural life cycle remains unclear. We have developed an integrated microfluidic device to address this question, enabling continuous single-cell tracking in a batch culture experiencing unperturbed nutrient exhaustion to unravel the coordination between metabolic and structural transitions within cells. Our technique reveals an abrupt fate divergence in the population, whereby a fraction of cells is unable to transition to respiratory metabolism and undergoes a reversible entry into a quiescence-like state leading to premature cell death. Further observations reveal that nonmonotonous internal pH fluctuations in respiration-competent cells orchestrate the successive waves of protein superassemblies formation that accompany the entry into a bona fide quiescent state. This ultimately leads to an abrupt cytosolic glass transition that occurs stochastically long after proliferation cessation. This new experimental framework provides a unique way to track single-cell fate dynamics over a long timescale in a population of cells that continuously modify their ecological niche.