Parental effects alter the adaptive value of an adult behavioural trait

  1. RM Kilner  Is a corresponding author
  2. G Boncoraglio
  3. JM Henshaw
  4. BJM Jarrett
  5. O De Gasperin
  6. A Attisano
  7. H Kokko
  1. University of Cambridge, United Kingdom
  2. Australian National University, Australia
  3. University of Zürich, Switzerland

Abstract

The parents' phenotype, or the environment they create for their young, can have long-lasting effects on their offspring, with profound evolutionary consequences. Yet virtually no work has considered how such parental effects might change the adaptive value of behavioural traits expressed by offspring upon reaching adulthood. To address this problem, we combined experiments on burying beetles (Nicrophorus vespilloides) with theoretical modelling, and focussed on one adult behavioural trait in particular: the supply of parental care. We manipulated the early life environment and measured the fitness payoffs associated with the supply of parental care when larvae reached maturity. We found that (1) adults that received low levels of care as larvae were less successful at raising larger broods, and suffered greater mortality as a result: they were low quality parents. Furthermore (2) high quality males that raised offspring with low quality females subsequently suffered greater mortality than brothers of equivalent quality, which reared larvae with higher quality females. Our analyses identify three general ways in which parental effects can change the adaptive value of an adult behavioural trait: by influencing the associated fitness benefits and costs; by consequently changing the evolutionary outcome of social interactions; and by modifying the evolutionarily stable expression of behavioural traits that are themselves parental effects.

Article and author information

Author details

  1. RM Kilner

    Department of Zoology, University of Cambridge, Cambridge, United Kingdom
    For correspondence
    rmk1002@cam.ac.uk
    Competing interests
    The authors declare that no competing interests exist.
  2. G Boncoraglio

    Department of Zoology, University of Cambridge, Cambridge, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  3. JM Henshaw

    Research School of Biology, Australian National University, Canberra, Australia
    Competing interests
    The authors declare that no competing interests exist.
  4. BJM Jarrett

    Department of Zoology, University of Cambridge, Cambridge, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  5. O De Gasperin

    Department of Zoology, University of Cambridge, Cambridge, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  6. A Attisano

    Department of Zoology, University of Cambridge, Cambridge, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  7. H Kokko

    Institute of Evolutionary Biology and Environmental Studies, University of Zürich, Zürich, Switzerland
    Competing interests
    The authors declare that no competing interests exist.

Reviewing Editor

  1. Carl T Bergstrom, University of Washington, United States

Version history

  1. Received: March 5, 2015
  2. Accepted: September 14, 2015
  3. Accepted Manuscript published: September 22, 2015 (version 1)
  4. Version of Record published: October 22, 2015 (version 2)

Copyright

© 2015, Kilner et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,135
    views
  • 406
    downloads
  • 26
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. RM Kilner
  2. G Boncoraglio
  3. JM Henshaw
  4. BJM Jarrett
  5. O De Gasperin
  6. A Attisano
  7. H Kokko
(2015)
Parental effects alter the adaptive value of an adult behavioural trait
eLife 4:e07340.
https://doi.org/10.7554/eLife.07340

Share this article

https://doi.org/10.7554/eLife.07340

Further reading

    1. Ecology
    Hao Wang, Kai He ... Chaolun Li
    Research Article

    Bathymodioline mussels dominate deep-sea methane seep and hydrothermal vent habitats and obtain nutrients and energy primarily through chemosynthetic endosymbiotic bacteria in the bacteriocytes of their gill. However, the molecular mechanisms that orchestrate mussel host–symbiont interactions remain unclear. Here, we constructed a comprehensive cell atlas of the gill in the mussel Gigantidas platifrons from the South China Sea methane seeps (1100 m depth) using single-nucleus RNA-sequencing (snRNA-seq) and whole-mount in situ hybridisation. We identified 13 types of cells, including three previously unknown ones, and uncovered unknown tissue heterogeneity. Every cell type has a designated function in supporting the gill’s structure and function, creating an optimal environment for chemosynthesis, and effectively acquiring nutrients from the endosymbiotic bacteria. Analysis of snRNA-seq of in situ transplanted mussels clearly showed the shifts in cell state in response to environmental oscillations. Our findings provide insight into the principles of host–symbiont interaction and the bivalves' environmental adaption mechanisms.

    1. Ecology
    Kim Schalcher, Estelle Milliet ... Emily LC Shepard
    Research Article

    Predator-prey arms races have led to the evolution of finely tuned disguise strategies. While the theoretical benefits of predator camouflage are well established, no study has yet been able to quantify its consequences for hunting success in natural conditions. We used high-resolution movement data to quantify how barn owls (Tyto alba) conceal their approach when using a sit-and-wait strategy. We hypothesized that hunting barn owls would modulate their landing force, potentially reducing noise levels in the vicinity of prey. Analysing 87,957 landings by 163 individuals equipped with GPS tags and accelerometers, we show that barn owls reduce their landing force as they approach their prey, and that landing force predicts the success of the following hunting attempt. Landing force also varied with the substrate, being lowest on man-made poles in field boundaries. The physical environment, therefore, affects the capacity for sound camouflage, providing an unexpected link between predator-prey interactions and land use. Finally, hunting strike forces in barn owls were the highest recorded in any bird, relative to body mass, highlighting the range of selective pressures that act on landings and the capacity of these predators to modulate their landing force. Overall, our results provide the first measurements of landing force in a wild setting, revealing a new form of motion-induced sound camouflage and its link to hunting success.