Quantitative and functional interrogation of parent-of-origin allelic expression biases in the brain

  1. Julio D Perez
  2. Nimrod D Rubinstein
  3. Daniel E Fernandez
  4. Stephen W Santoro
  5. Leigh A Needleman
  6. Olivia Ho-Shing
  7. John J Choi
  8. Mariela Zirlinger
  9. Shau-Kwaun Chen
  10. Jun S Liu
  11. Catherine Dulac  Is a corresponding author
  1. Howard Hughes Medical Institute, Harvard University, United States
  2. Harvard University, United States
  3. University of Wyoming, United States
  4. Cell Press, United States
  5. National Chengchi University, Taiwan

Abstract

The maternal and paternal genomes play different roles in mammalian brains as a result of genomic imprinting, an epigenetic regulation leading to differential expression of the parental alleles of some genes. Here we investigate genomic imprinting in the cerebellum using a newly developed Bayesian statistical model that provides unprecedented transcript-level resolution. We uncover 160 imprinted transcripts, including 41 novel and independently validated imprinted genes. Strikingly, many genes exhibit parentally biased -rather than monoallelic- expression, with different magnitudes according to age, organ, and brain region. Developmental changes in parental bias and overall gene expression are strongly correlated, suggesting combined roles in regulating gene dosage. Finally, brain-specific deletion of the paternal, but not maternal, allele of the paternally-biased Bcl-x, (Bcl2l1) results in loss of specific neuron types, supporting the functional significance of parental biases. These findings reveal the remarkable complexity of genomic imprinting, with important implications for understanding the normal and diseased brain.

Article and author information

Author details

  1. Julio D Perez

    Department of Molecular and Cellular Biology, Howard Hughes Medical Institute, Harvard University, Cambridge, United States
    Competing interests
    No competing interests declared.
  2. Nimrod D Rubinstein

    Department of Molecular and Cellular Biology, Howard Hughes Medical Institute, Harvard University, Cambridge, United States
    Competing interests
    No competing interests declared.
  3. Daniel E Fernandez

    Department of Statistics, Harvard University, Cambridge, United States
    Competing interests
    No competing interests declared.
  4. Stephen W Santoro

    Neuroscience Program, Department of Zoology and Physiology, University of Wyoming, Laramie, United States
    Competing interests
    No competing interests declared.
  5. Leigh A Needleman

    Department of Molecular and Cellular Biology, Howard Hughes Medical Institute, Harvard University, Cambridge, United States
    Competing interests
    No competing interests declared.
  6. Olivia Ho-Shing

    Department of Molecular and Cellular Biology, Howard Hughes Medical Institute, Harvard University, Cambridge, United States
    Competing interests
    No competing interests declared.
  7. John J Choi

    Department of Molecular and Cellular Biology, Howard Hughes Medical Institute, Harvard University, Cambridge, United States
    Competing interests
    No competing interests declared.
  8. Mariela Zirlinger

    Cell Press, Cambridge, United States
    Competing interests
    No competing interests declared.
  9. Shau-Kwaun Chen

    National Chengchi University, Tapei, Taiwan
    Competing interests
    No competing interests declared.
  10. Jun S Liu

    Department of Statistics, Harvard University, Cambridge, United States
    Competing interests
    No competing interests declared.
  11. Catherine Dulac

    Department of Molecular and Cellular Biology, Howard Hughes Medical Institute, Harvard University, Cambridge, United States
    For correspondence
    dulac@fas.harvard.edu
    Competing interests
    Catherine Dulac, Senior editor, eLife.

Ethics

Animal experimentation: This study was performed within the facilities of the Harvard University Faculty of Arts and Sciences (HU/FAS) in strict accordance with the recommendations in the Guide for the Care and Use of Laboratory Animals of the National Institutes of Health. All animals were handled according to a protocol approved by the Harvard University Institutional Animal Care and Use Committee (IACUC; protocol #97-03). The HU/FAS animal care and use program maintains full AAALAC accreditation, is assured with OLAW (A3593-01), and is currently registered with the USDA. Every effort was made to minimize animal suffering during this study.

Copyright

© 2015, Perez et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 4,433
    views
  • 950
    downloads
  • 75
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Julio D Perez
  2. Nimrod D Rubinstein
  3. Daniel E Fernandez
  4. Stephen W Santoro
  5. Leigh A Needleman
  6. Olivia Ho-Shing
  7. John J Choi
  8. Mariela Zirlinger
  9. Shau-Kwaun Chen
  10. Jun S Liu
  11. Catherine Dulac
(2015)
Quantitative and functional interrogation of parent-of-origin allelic expression biases in the brain
eLife 4:e07860.
https://doi.org/10.7554/eLife.07860

Share this article

https://doi.org/10.7554/eLife.07860

Further reading

    1. Neuroscience
    Proloy Das, Mingjian He, Patrick L Purdon
    Tools and Resources

    Modern neurophysiological recordings are performed using multichannel sensor arrays that are able to record activity in an increasingly high number of channels numbering in the 100s to 1000s. Often, underlying lower-dimensional patterns of activity are responsible for the observed dynamics, but these representations are difficult to reliably identify using existing methods that attempt to summarize multivariate relationships in a post hoc manner from univariate analyses or using current blind source separation methods. While such methods can reveal appealing patterns of activity, determining the number of components to include, assessing their statistical significance, and interpreting them requires extensive manual intervention and subjective judgment in practice. These difficulties with component selection and interpretation occur in large part because these methods lack a generative model for the underlying spatio-temporal dynamics. Here, we describe a novel component analysis method anchored by a generative model where each source is described by a bio-physically inspired state-space representation. The parameters governing this representation readily capture the oscillatory temporal dynamics of the components, so we refer to it as oscillation component analysis. These parameters – the oscillatory properties, the component mixing weights at the sensors, and the number of oscillations – all are inferred in a data-driven fashion within a Bayesian framework employing an instance of the expectation maximization algorithm. We analyze high-dimensional electroencephalography and magnetoencephalography recordings from human studies to illustrate the potential utility of this method for neuroscience data.

    1. Neuroscience
    Sihan Yang, Anastasia Kiyonaga
    Insight

    A neural signature of serial dependence has been found, which mirrors the attractive bias of visual information seen in behavioral experiments.