Flux analysis of cholesterol biosynthesis in vivo reveals multiple tissue and cell-type specific pathways

  1. Matthew A Mitsche
  2. Jeffrey G McDonald
  3. Helen H Hobbs
  4. Jonathan C Cohen  Is a corresponding author
  1. University of Texas Southwestern Medical Center, United States

Abstract

Two parallel pathways produce cholesterol: the Bloch and Kandutsch-Russell pathways. Here we used stable isotope labeling and isotopomer analysis to trace sterol flux through the two pathways in mice. Surprisingly, no tissue used the canonical K-R pathway. Rather, a hybrid pathway was identified that we call the modified K-R (MK-R) pathway. Proportional flux through the Bloch pathway varied from 8% in preputial gland to 97% in testes, and the tissue-specificity observed in vivo was retained in cultured cells. The distribution of sterol isotopomers in plasma mirrored that of liver. Sterol depletion in cultured cells increased flux through the Bloch pathway, whereas overexpression of 24-dehydrocholesterol reductase (DHCR24) enhanced usage of the MK-R pathway. Thus, relative use of the Bloch and MK-R pathways is highly variable, tissue-specific, flux dependent, and epigenetically fixed. Maintenance of two interdigitated pathways permits production of diverse bioactive sterols that can be regulated independently of cholesterol.

Article and author information

Author details

  1. Matthew A Mitsche

    Department of Molecular Genetics, University of Texas Southwestern Medical Center, Dallas, United States
    Competing interests
    No competing interests declared.
  2. Jeffrey G McDonald

    Department of Molecular Genetics, University of Texas Southwestern Medical Center, Dallas, United States
    Competing interests
    No competing interests declared.
  3. Helen H Hobbs

    Department of Molecular Genetics, University of Texas Southwestern Medical Center, Dallas, United States
    Competing interests
    Helen H Hobbs, Reviewing editor, eLife.
  4. Jonathan C Cohen

    Human Nutrition Center, University of Texas Southwestern Medical Center, Dallas, United States
    For correspondence
    jonathan.cohen@utsouthwestern.edu
    Competing interests
    No competing interests declared.

Ethics

Animal experimentation: This study protocol was approved approved by the institutional animal care and use committee (IACUC) of the University of Texas Southwestern Medical Center (APN 2008-0321). All studies were performed in accordance with the recommendations in the Guide for the Care and Use of Laboratory Animals of the National Institutes of Health.

Copyright

© 2015, Mitsche et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 5,137
    views
  • 1,367
    downloads
  • 168
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Citations by DOI

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Matthew A Mitsche
  2. Jeffrey G McDonald
  3. Helen H Hobbs
  4. Jonathan C Cohen
(2015)
Flux analysis of cholesterol biosynthesis in vivo reveals multiple tissue and cell-type specific pathways
eLife 4:e07999.
https://doi.org/10.7554/eLife.07999

Share this article

https://doi.org/10.7554/eLife.07999