An excitatory amacrine cell detects object motion and provides feature-selective input to ganglion cells in the mouse retina
Abstract
Retinal circuits detect salient features of the visual world and report them to the brain through spike trains of retinal ganglion cells. The most abundant ganglion cell type in mice, the so called W3 ganglion cell, selectively responds to movements of small objects. Where and how object motion sensitivity arises in the retina is incompletely understood. Here, we use 2 photon guided patch clamp recordings to characterize responses of VGluT3 expressing amacrine cells to a broad set of visual stimuli. We find that VG3 ACs are object motion sensitive and analyze the synaptic mechanisms underlying this computation. Anatomical circuit reconstructions suggest that VGluT3 expressing amacrine cells form glutamatergic synapses with W3 ganglion cells and targeted recordings show that the tuning of W3 ganglion cells' excitatory input matches that of VGluT3 expressing amacrine cells' responses. Synaptic excitation of W3 ganglion cells is diminished and responses to object motion are suppressed in mice lacking VGluT3. Object motion thus is first detected by VGluT3 expressing amacrine cells, which provide feature selective excitatory input to W3 ganglion cells.
Article and author information
Author details
Ethics
Animal experimentation: All procedures in this study were approved by the Animal Studies Committee of Washington University School of Medicine (Protocol #: 20140095) and performed in compliance with the National Institutes of Health Guide for the Care and Use of Laboratory Animals.
Copyright
© 2015, Kim et al.
This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.
Metrics
-
- 3,935
- views
-
- 807
- downloads
-
- 84
- citations
Views, downloads and citations are aggregated across all versions of this paper published by eLife.